State of the Art in Neural Networks and Their Applications : Volume 1

個数:
電子版価格
¥26,911
  • 電子版あり

State of the Art in Neural Networks and Their Applications : Volume 1

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 324 p.
  • 言語 ENG
  • 商品コード 9780128197400
  • DDC分類 616.07540285

Full Description

State of the Art in Neural Networks and Their Applications presents the latest advances in artificial neural networks and their applications across a wide range of clinical diagnoses. Advances in the role of machine learning, artificial intelligence, deep learning, cognitive image processing and suitable data analytics useful for clinical diagnosis and research applications are covered, including relevant case studies. The application of Neural Network, Artificial Intelligence, and Machine Learning methods in biomedical image analysis have resulted in the development of computer-aided diagnostic (CAD) systems that aim towards the automatic early detection of several severe diseases.

State of the Art in Neural Networks and Their Applications is presented in two volumes. Volume 1 covers the state-of-the-art deep learning approaches for the detection of renal, retinal, breast, skin, and dental abnormalities and more.

Contents

1. Computer Aided Detection of Abnormality in Mammography using Deep Object Detectors
2. Detection of retinal abnormalities in fundus image using CNN Deep Learning Networks
3. A survey of Deep Learning Based Methods for Cryo-electron Tomography Data Analysis
4. Detection, Segmentation and Numbering of Teeth in Dental Panoramic Images with Mask RCNN
5. Accurate Identification of Renal Transplant Rejection: Convolutional Neural Networks and Diffusion MRI
6. Applications of the ESPNet Architecture in Medical Imaging
7. Achievements of Neural Network in Skin Lesions Classification
8. A Computer-aided-diagnosis System for Breast Cancer Molecular Subtypes Prediction in mammographic images
9. Computer-Aided Diagnosis of Renal Masses
10. Early Identification of Acute Rejection for Renal Allografts: A Machine Learning Approach
11. Deep Learning for Computer-Aided Diagnosis in Ophthalmology: A Review
12. Deep Learning for Ophthalmology using Optical Coherence Tomography
13. Generative Adversarial Networks in Medical Imaging
14. Deep Learning from Small Labeled Datasets Applied to Medical Image Analysis