生態学のためのベイズ統計データ解析<br>Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan

個数:
電子版価格
¥10,756
  • 電子版あり

生態学のためのベイズ統計データ解析
Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 328 p.
  • 言語 ENG
  • 商品コード 9780128013700
  • DDC分類 577.01519542

Full Description

Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and STAN examines the Bayesian and frequentist methods of conducting data analyses. The book provides the theoretical background in an easy-to-understand approach, encouraging readers to examine the processes that generated their data. Including discussions of model selection, model checking, and multi-model inference, the book also uses effect plots that allow a natural interpretation of data.

Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and STAN introduces Bayesian software, using R for the simple modes, and flexible Bayesian software (BUGS and Stan) for the more complicated ones. Guiding the ready from easy toward more complex (real) data analyses ina step-by-step manner, the book presents problems and solutions—including all R codes—that are most often applicable to other data and questions, making it an invaluable resource for analyzing a variety of data types.

Contents

1. Why Do We Need Statistical Models?2. Prerequisites and Vocabulary3. The Bayesian and Frequentist Ways of Analyzing Data4. Normal Linear Models5. Likelihood6. Assessing Model Assumptions: Residual Analysis7. Linear Mixed Effects Model LMM8. Generalized Linear Model GLM9. Generalized Linear Mixed Model GLMM10. Posterior Predictive Model Checking and Proportion of Explained Variance11. Model Selection and Multi-Model Inference12. Markov Chain Monte Carlo Simulation (MCMC)13. Modeling Spatial Data Using GLMM14. Advanced Ecological Models15. Prior Influence and Parameter Estimability16. Checklist17. What Should I Report in a Paper?

最近チェックした商品