- ホーム
- > 洋書
- > 英文書
- > Science / Mathematics
Full Description
Advanced Power Generation Systems examines the full range of advanced multiple output thermodynamic cycles that can enable more sustainable and efficient power production from traditional methods, as well as driving the significant gains available from renewable sources. These advanced cycles can harness the by-products of one power generation effort, such as electricity production, to simultaneously create additional energy outputs, such as heat or refrigeration. Gas turbine-based, and industrial waste heat recovery-based combined, cogeneration, and trigeneration cycles are considered in depth, along with Syngas combustion engines, hybrid SOFC/gas turbine engines, and other thermodynamically efficient and environmentally conscious generation technologies. The uses of solar power, biomass, hydrogen, and fuel cells in advanced power generation are considered, within both hybrid and dedicated systems.
The detailed energy and exergy analysis of each type of system provided by globally recognized author Dr. Ibrahim Dincer will inform effective and efficient design choices, while emphasizing the pivotal role of new methodologies and models for performance assessment of existing systems. This unique resource gathers information from thermodynamics, fluid mechanics, heat transfer, and energy system design to provide a single-source guide to solving practical power engineering problems.
Contents
Fundamentals of Thermodynamics
Energy, Environment, and Sustainable Development
Fossil Fuels and Alternatives
Hydrogen Fuel Cell Systems
Conventional Power Generating Systems
Nuclear Power Generation
Renewable-Energy-Based Power Generating Systems
Integrated Power Generating Systems
Multigeneration Systems
Novel Power Generating Systems