ゲームの物理学(第2版)<br>Game Physics (2ND)

個数:

ゲームの物理学(第2版)
Game Physics (2ND)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 902 p.
  • 言語 ENG
  • 商品コード 9780123749031
  • DDC分類 006.693

基本説明

A complete resource to the mathematical and physical concepts necessary for game programmers to understand.

Full Description

Create physically realistic 3D Graphics environments with this introduction to the ideas and techniques behind the process. Author David H. Eberly includes simulations to introduce the key problems involved and then gradually reveals the mathematical and physical concepts needed to solve them. He then describes all the algorithmic foundations and uses code examples and working source code to show how they are implemented, culminating in a large collection of physical simulations. The book tackles the complex, challenging issues that other books avoid, including Lagrangian dynamics, rigid body dynamics, impulse methods, resting contact, linear complementarity problems, deformable bodies, mass-spring systems, friction, numerical solution of differential equations, numerical stability and its relationship to physical stability, and Verlet integration methods. This book even describes when real physics isn't necessary - and hacked physics will do.

Contents

Game Physics
1st edition

1 A Brief History of the World: A Summary of the Topics
2 Basic Concepts
3 Rigid Body Motion
4 Deformable Bodies
5 Physics Engines
6 Physics and Shader Programs
7 Linear Complementarity and Mathematical Programming
8 Differential Equations
9 Numerical Methods
10 Quaternions
Appendices
A Linear Algebra
B Affine Algebra
C Calculus
D Ordinary Difference Equations

A Summary of the Changes for the 2nd Edition:

Naturally, Chapter 1 (Introduction) will be rewritten based on the contents for the second edition.

The chapter on Physics Engines needs a significant rewrite. The goal will be to describe how to implement a classic rigid-body physics engine. And there will be source code to go with it, illustrating a generic collision detection system to go with the collision response people seem to associate with a physics engine. I will also include a new section on ragdoll physics, and there will be source code to go with this.

I plan on inserting a new chapter (chapter 6 below) that will contain descriptions of various papers of interest in game physics. In particular, I will review publications by Ronald Fedkiw, Jos Stam, and James O'Brien, choosing a few of each to describe and to implement in source code and include on the CDROM for the book. This new material fills the void in the 1st edition - not much discussion of applications of particle systems, fluids, or gases. The chapter on shader programs (old Chapter 6) will be discarded in its entirety.

Chapters 7 through 10 and Appendices A through D form the mathematical heart of the book. The appendices are effectively background material that a reader will be exposed to at a university. The chapters 7 through 10 are more advanced topics. I believe it is reasonable to break the book into two parts:

Part I -The Physics

1 Introduction
2 Basic Concepts
3 Rigid Bodies
4 Deformable Bodies
5 Physics Engines [rigid body concepts]
6 Particles, Fluids, and Gases [deformable body concepts]

Part II -The Mathematics

7 Linear Algebra
8 Affine Algebra
9 Calculus
10 Quaternions
11 Differential Equations
12 Difference Equations
13 Numerical Methods
14 Linear Complementarity and Mathematical Programming

The idea is that Part I is readable immediately by anyone having a reasonable mathematics background. Portions of Part II can be read, as needed.

The chapter on Linear Complementarity will be rewritten to omit the Lemke algorithm, replacing it by a discussion of iterative methods to solve LCP.

The 2nd edition will contain a lot more source code. And, as mentioned previously, we should include CD-ROM icons in the margins to let readers know that there is source code to illustrate the concepts.

最近チェックした商品