- ホーム
- > 洋書
- > 英文書
- > Science / Mathematics
Full Description
Bioenergy Systems for the Future: Prospects for Biofuels and Biohydrogen examines the current advances in biomass conversion technologies for biofuels and biohydrogen production, including their advantages and challenges for real-world application and industrial-scale implementation.
In its first part, the book explores the use of lignocellulosic biomass and agricultural wastes as feedstock, also addressing biomass conversion into biofuels, such as bioethanol, biodiesel, bio-methane, and bio-gasoline. The chapters in Part II cover several different pathways for hydrogen production, from biomass, including bioethanol and bio-methane reforming and syngas conversion. They also include a comparison between the most recent conversion technologies and conventional approaches for hydrogen production.
Part III presents the status of advanced bioenergy technologies, such as applications of nanotechnology and the use of bio-alcohol in low-temperature fuel cells. The role of advanced bioenergy in a future bioeconomy and the integration of these technologies into existing systems are also discussed, providing a comprehensive, application-oriented overview that is ideal for engineering professionals, researchers, and graduate students involved in bioenergy.
Contents
Biomass to bioenergy
1. Biomass pretreatment and transformation from agricultural wastes
2. Efficient transformation of non-food agricultural lignocelluloses
3. Production of bio-alcohol and bio-methane
4. Light olefins/biogasoline production from biomass
5. Bioenergy from stillage anaerobic digestion to enhance the energy balance ratio of ethanol production
Hydrogen production
6. Thermodynamic analysis of ethanol reforming for hydrogen production
7. Catalysts for conversion of synthesis gas
8. Distributed H2 production from bio-alcohols and bio-methane in conventional steam reforming units
9. H2 production from bio-alchools and bio-methane steam reforming in conventional and membrane reactors
10. Formation of hydrogen rich gas via conversion of lignocellulosic biomass and its decomposition products
11. Advantages and diadvantages of recent biomass conversion technologies compared to conventional approaches for hydrogen production
Bioenergy technology aspects/status
12. Nanocomposites for ''Nano Green Energy'' Applications
13. Integration of membrane technologies into conventional existing systems in the food industry
14. Integration of microalgae into an existing biofuel industry
15. Low-temperature fuel cell operated with bio-alcohol fuels
16. Syngas cleaning system for power generation
17. Bioenergy production from second and third generation feedstocks