出版社内容情報
機械学習のベストプラクティスが学べるデザインパターン集!
タイトルに「デザインパターン」とあるように、機械学習で繰り返し登場する課題を30のパターン(データ表現、問題表現、モデルの訓練、再現性、柔軟性、接続性、説明性、公平性などに関するもの)に分類し、それぞれについてベストプラクティスを提示・解説します。手を動かしながら機械学習を試したい初心者の実践的な入門書としても、現場のデータサイエンティストのリファレンスとしても読んでもらえる内容となっています。アメリカ海洋気象庁の研究者として、さらにGoogle Cloudのデータ分析&AI部門トップとしての豊富な経験に基づく実用本位の一冊です。
内容説明
新時代の新常識。AIエンジニアが知るべき、30のベストプラクティス。
目次
1章 機械学習デザインパターンの必要性
2章 データ表現のパターン
3章 問題表現のパターン
4章 モデル訓練のパターン
5章 対応性のある運用のパターン
6章 再現性のパターン
7章 責任あるAIのパターン
8章 パターンのつながり
著者等紹介
ラクシュマナン,バリアッパ[ラクシュマナン,バリアッパ] [Lakshmanan,Valliappa]
Google Cloudのデータ分析およびAIソリューションのグローバルヘッド。彼のチームは、Google Cloudのデータ分析および機械学習プロダクトを使ってビジネス上の問題に対するソフトウェアソリューションを構築。彼は過去に、Google Advanced Solutions Labの機械学習集中プログラムを創設。Googleに入社前は、Climate Corporationのデータサイエンス部門のトップ、NAOO(米国海洋大気庁)の研究者を歴任
ロビンソン,サラ[ロビンソン,サラ] [Robinson,Sara]
GoogleのCloud Platformチームにおいて、特に機械学習にフォーカスしたDeveloper Advocate。デモ、オンラインコンテンツ、イベントを通じて、開発者やデータサイエンティストに対するアプリケーションへの機械学習統合の促進。ブランダイス大学で学位を取得。Google入社前は、FirebaseチームのDeveloper Advocate
マン,マイケル[マン,マイケル] [Munn,Michael]
Googleの機械学習ソリューションエンジニアとして、Google Cloudの顧客のために機械学習モデルの設計、実装、デプロイを支援。また、Advanced Solutions Labで機械学習集中プログラム講師。ニューヨーク市立大学で数学の博士号を取得。Google入社前は研究教授(本データはこの書籍が刊行された当時に掲載されていたものです)
※書籍に掲載されている著者及び編者、訳者、監修者、イラストレーターなどの紹介情報です。
-
- 電子書籍
- 医療言語処理 自然言語処理シリーズ12
-
- 電子書籍
- 教育現象のシステム論