機械学習デザインパターン―データ準備、モデル構築、MLOpsの実践上の問題と解決

個数:
  • ポイントキャンペーン

機械学習デザインパターン―データ準備、モデル構築、MLOpsの実践上の問題と解決

  • ウェブストアに1冊在庫がございます。(2025年05月04日 00時24分現在)
    通常、ご注文翌日~2日後に出荷されます。
  • 出荷予定日とご注意事項
    ※上記を必ずご確認ください

    【ご注意事項】 ※必ずお読みください
    ◆在庫数は刻々と変動しており、ご注文手続き中に減ることもございます。
    ◆在庫数以上の数量をご注文の場合には、超過した分はお取り寄せとなり日数がかかります。入手できないこともございます。
    ◆事情により出荷が遅れる場合がございます。
    ◆お届け日のご指定は承っておりません。
    ◆「帯」はお付けできない場合がございます。
    ◆画像の表紙や帯等は実物とは異なる場合があります。
    ◆特に表記のない限り特典はありません。
    ◆別冊解答などの付属品はお付けできない場合がございます。
  • ●3Dセキュア導入とクレジットカードによるお支払いについて
    ●店舗受取サービス(送料無料)もご利用いただけます。
    ご注文ステップ「お届け先情報設定」にてお受け取り店をご指定ください。尚、受取店舗限定の特典はお付けできません。詳細はこちら
  • サイズ B5判/ページ数 387p/高さ 24cm
  • 商品コード 9784873119564
  • NDC分類 007.1
  • Cコード C3055

出版社内容情報

機械学習のベストプラクティスが学べるデザインパターン集!
タイトルに「デザインパターン」とあるように、機械学習で繰り返し登場する課題を30のパターン(データ表現、問題表現、モデルの訓練、再現性、柔軟性、接続性、説明性、公平性などに関するもの)に分類し、それぞれについてベストプラクティスを提示・解説します。手を動かしながら機械学習を試したい初心者の実践的な入門書としても、現場のデータサイエンティストのリファレンスとしても読んでもらえる内容となっています。アメリカ海洋気象庁の研究者として、さらにGoogle Cloudのデータ分析&AI部門トップとしての豊富な経験に基づく実用本位の一冊です。

内容説明

新時代の新常識。AIエンジニアが知るべき、30のベストプラクティス。

目次

1章 機械学習デザインパターンの必要性
2章 データ表現のパターン
3章 問題表現のパターン
4章 モデル訓練のパターン
5章 対応性のある運用のパターン
6章 再現性のパターン
7章 責任あるAIのパターン
8章 パターンのつながり

著者等紹介

ラクシュマナン,バリアッパ[ラクシュマナン,バリアッパ] [Lakshmanan,Valliappa]
Google Cloudのデータ分析およびAIソリューションのグローバルヘッド。彼のチームは、Google Cloudのデータ分析および機械学習プロダクトを使ってビジネス上の問題に対するソフトウェアソリューションを構築。彼は過去に、Google Advanced Solutions Labの機械学習集中プログラムを創設。Googleに入社前は、Climate Corporationのデータサイエンス部門のトップ、NAOO(米国海洋大気庁)の研究者を歴任

ロビンソン,サラ[ロビンソン,サラ] [Robinson,Sara]
GoogleのCloud Platformチームにおいて、特に機械学習にフォーカスしたDeveloper Advocate。デモ、オンラインコンテンツ、イベントを通じて、開発者やデータサイエンティストに対するアプリケーションへの機械学習統合の促進。ブランダイス大学で学位を取得。Google入社前は、FirebaseチームのDeveloper Advocate

マン,マイケル[マン,マイケル] [Munn,Michael]
Googleの機械学習ソリューションエンジニアとして、Google Cloudの顧客のために機械学習モデルの設計、実装、デプロイを支援。また、Advanced Solutions Labで機械学習集中プログラム講師。ニューヨーク市立大学で数学の博士号を取得。Google入社前は研究教授(本データはこの書籍が刊行された当時に掲載されていたものです)
※書籍に掲載されている著者及び編者、訳者、監修者、イラストレーターなどの紹介情報です。

最近チェックした商品