出版社内容情報
『Interpretable AI:Building Explainable Machine Learning Systems』(Ajay Thampi/Manning)の日本語版。
AIモデルの透明性と解釈可能性、そして説明可能性の追求は、エラーやバイアスを最小限に抑え、予測結果の信頼性・公平性を高め「責任あるAI」を実現するために重要な分野です。
本書では、線形回帰や決定木などのシンプルなホワイトボックスモデルから、深層ニューラルネットワークなどのようなブラックボックスモデルまで、その解釈手法とPythonによる実装を解説。「どのように動作し、予測に至ったのか」に答え、モデルを「解釈可能」にするためのアプローチを網羅的に扱い、そして更に「なぜ、この予測をしたのか」に答え「説明可能なAI」に至るための道を示しています。
【日本語版特別付録】
本書の第7章では、英語を対象とした、テキストからの特徴量の抽出を扱っています。
日本語版には、この処理を日本語に適用する方法を解説した『付録C 日本語版付録 日本語を扱う』を収録しています。
【Contents】
第1部 解釈可能性の基礎
第1章はじめに
第2章ホワイトボックスモデル
第2部 モデルの処理の解釈
第3章 モデルに依存しない方法:大域的な解釈可能性
第4章 モデルに依存しない方法:局所的な解釈可能性
第5章 顕著性マップ
第3部 モデルの表現の解釈
第6章 層とユニットを理解する
第7章 意味的な類似性を理解する
第4部 公平性とバイアス
第8章 公平性とバイアスの軽減
第9章 説明可能なAIへの道
Appendix
付録A セットアップを行う
付録B PyTorch
付録C 日本語版付録日本語を扱う
内容説明
AIモデルの透明性と解釈可能性、そして説明可能性の追求は、エラーやバイアスを最小限に抑え、予測結果の信頼性・公平性を高め「責任あるAI」を実現するために重要な分野です。本書では、線形回帰や決定木などのシンプルなホワイトボックスモデルから、深層ニューラルネットワークなどのようなブラックボックスモデルまで、その解釈手法とPythonによる実装を解説。「どのように動作し、予測に至ったのか」に答え、モデルを「解釈可能」にするためのアプローチを網羅的に扱い、そして更に「なぜ、この予測をしたのか」に答え「説明可能なAI」に至るための道を示しています。
目次
第1部 解釈可能性の基礎(はじめに;ホワイトボックスモデル)
第2部 モデルの処理の解釈(モデルに依存しない方法:大域的な解釈可能性;モデルに依存しない方法:局所的な解釈可能性;顕著性マップ)
第3部 モデルの表現の解釈(層とユニットを理解する;意味的な類似性を理解する)
第4部 公平性とバイアス(公平性とバイアスの軽減;説明可能なAIへの道)
Appendix 巻末付録(セットアップを行う;PyTorch;日本語版付録 日本語を扱う)
著者等紹介
Thampi,Ajay[THAMPI,AJAY] [Thampi,Ajay]
機械学習に強いバックグラウンドを持っており、博士号は信号処理と機械学習がテーマ。強化学習、凸最適化、5Gセルラーネットワークに適用される古典的な機械学習技術をテーマに、主要なカンファレンスやジャーナルで論文を発表している。現在は、大手テック企業で主に責任あるAIと公平性を専門に機械学習エンジニアとして活躍しており、マイクロソフトのリードデータサイエンティストとして、製造業、小売業、金融業など様々な業界の顧客に対して、複雑なAIソリューションをデプロイする仕事を担当した経験を持つ(本データはこの書籍が刊行された当時に掲載されていたものです)
※書籍に掲載されている著者及び編者、訳者、監修者、イラストレーターなどの紹介情報です。
-
- 和書
- 俺ではない炎上