出版社内容情報
ニューラルネットワークの理論とディープラーニングの実装について丁寧に解説。実装には、Python(3.x)を用い、ディープラーニング向けライブラリKeras(2.x)、TensorFlow(2.x)、PyTorch(1.x)を用います。
本書では、自然言語処理をはじめとした時系列データ処理のためのディープラーニング・アルゴリズムに焦点を当てているのも大きな特徴の1つです。本書の[第1版](2017年)以降に次々と登場している新しい手法やモデルを丁寧に説明、記事も大幅にボリュームアップしました。
[本書の構成]
1章 数学の準備:ニューラルネットワークのアルゴリズムを理解するための数学の知識、偏微分と線形代数の基本を学びます。アルゴリズムが複雑になってもこの2つを押さえておけばきちんと理解できます。
2章 Pythonの準備:ディープラーニングのアルゴリズムを実装するため、Python環境の構築およびPythonの基本から代表的なライブラリの使い方までを解説します。
3章 ニューラルネットワーク:ニューラルネットワークとは何か、どういった手法かを解説します。単純パーセプトロン、ロジスティック回帰、多クラスロジスティック回帰、多層パーセプトロンを扱います。
4章 ディープニューラルネットワーク:ディープラーニングはニューラルネットワークのモデルの発展形です。ニューラルネットワークから「ディープ」ニューラルネットワークになるうえで発生する課題とそれを解決するテクニックについて解説します。
5章 リカレントニューラルネットワーク:ニューラルネットワークに「時間」という概念を取り込むとどのようなモデルになるのか。通常のディープラーニングのモデルではうまく扱うことができない時系列データの扱いに特化したモデルであるリカレントニューラルネットワーク(RNN)とその手法LSTM、GRUについて取り上げます。
6章 リカレントニューラルネットワークの応用:時系列データの扱いに関しては、自然言語処理で新しいモデルが考えられてきました。本章では、Encoder-Decoder、Attention、Transformerについて学んでいきます。
付録 ライブラリ内部の処理を理解するためのグラフの知識と、Pythonのデコレータ @tf.function の実装例、Keras、TensorFlow、PyTorchによるモデルの保存・読み込みについて解説します。
内容説明
ディープラーニング実装入門書の決定版!Keras 2.x/TensorFlow 2.x、PyTorch 1.x対応。ディープラーニングに関する様々な課題を新たに実装しコードを公開。定式化や実装をより丁寧に記述。本書第1版(2017年)以降に次々と登場している新しい手法や時系列データを扱うモデルの理論および実装など、大幅にボリュームアップ。
目次
第1章 数学の準備
第2章 Pythonの準備
第3章 ニューラルネットワーク
第4章 ディープニューラルネットワーク
第5章 リカレントニューラルネットワーク
第6章 リカレントニューラルネットワークの応用
著者等紹介
巣籠悠輔[スゴモリユウスケ]
Google NY支社勤務を経て、現在株式会社情報医療CTO。日本ディープラーニング協会有識者会員。2018年にForbes 30 Under 30 Asia 2018に選出(本データはこの書籍が刊行された当時に掲載されていたものです)
※書籍に掲載されている著者及び編者、訳者、監修者、イラストレーターなどの紹介情報です。