機械学習システムデザイン―実運用レベルのアプリケーションを実現する継続的反復プロセス

個数:

機械学習システムデザイン―実運用レベルのアプリケーションを実現する継続的反復プロセス

  • 在庫が僅少です。通常、3~7日後に出荷されます
    ※事情により出荷が遅れたり、在庫切れとなる場合もございます。
    ※他のご注文品がすべて揃ってからの発送が原則となります(ご予約品を除く)。
    ※複数冊ご注文の場合にはお取り寄せとなり1~3週間程度かかります。
  • 出荷予定日とご注意事項
    ※上記を必ずご確認ください

    【出荷予定日】
    ■通常、3~7日後に出荷されます

    【ご注意事項】 ※必ずお読みください
    ◆在庫状況は刻々と変化しており、ご注文手続き中やご注文後に在庫切れとなることがございます。
    ◆出荷予定日は確定ではなく、表示よりも出荷が遅れる場合が一部にございます。
    ◆複数冊をご注文の場合には全冊がお取り寄せとなります。お取り寄せの場合の納期や入手可否についてはこちらをご参照ください。
    ◆お届け日のご指定は承っておりません。
    ◆「帯」はお付けできない場合がございます。
    ◆画像の表紙や帯等は実物とは異なる場合があります。
    ◆特に表記のない限り特典はありません。
    ◆別冊解答などの付属品はお付けできない場合がございます。
  • ●3Dセキュア導入とクレジットカードによるお支払いについて
    ●店舗受取サービス(送料無料)もご利用いただけます。
    ご注文ステップ「お届け先情報設定」にてお受け取り店をご指定ください。尚、受取店舗限定の特典はお付けできません。詳細はこちら
  • サイズ B5判/ページ数 408p/高さ 24cm
  • 商品コード 9784814400409
  • NDC分類 007.1
  • Cコード C3055

出版社内容情報

機械学習システム設計(デザイン)を業務での実践的な観点で解説!
ビジネスとしての機械学習システムの設計や運用についての解説書。本書では、機械学習の最前線で活躍する著者の豊富な経験と知識に基づき、エンド・ツー・エンドの機械学習システムを設計・構築するための基本原則を明らかにします。訓練データの処理方法、特徴の使い方、モデルを再訓練する頻度、監視すべき項目……このような設計上の決定がシステム全体の目的達成にどのように寄与するのかを、実際のケーススタディを通じて理解します。機械学習プロジェクトを成功に導く上で必要な信頼性、拡張性、保守性、およびビジネス要件の変化への適応性を備えた機械学習システムを設計する包括的なアプローチを本書で学ぶことができます。

内容説明

ビジネスとしての機械学習システムの設計や運用についての解説書。本書では、機械学習の最前線で活躍する著者の豊富な経験と知識に基づき、エンド・ツー・エンドの機械学習システムを設計・構築するための基本原則を明らかにします。訓練データの処理方法、特徴の使い方、モデルを再訓練する頻度、監視すべき項目…このような設計上の決定がシステム全体の目的達成にどのように寄与するのかを、実際のケーススタディを通じて理解します。機械学習プロジェクトを成功に導く上で必要な信頼性、拡張性、保守性、およびビジネス要件の変化への適応性を備えた機械学習システムを設計する包括的なアプローチを本書で学ぶことができます。

目次

1章 機械学習システムの概要
2章 機械学習システム設計の概要
3章 データエンジニアリングの基礎知識
4章 訓練データ
5章 特徴エンジニアリング
6章 モデル開発とオフライン評価
7章 モデルのデプロイと予測サービス
8章 データ分布のシフトと監視
9章 実現場での継続学習とテスト
10章 MLOpsにおけるインフラとツール
11章 機械学習の人的側面
付録A 機械学習システムを外部に提供する

著者等紹介

フエン,チップ[フエン,チップ] [Huyen,Chip]
リアルタイム機械学習のインフラストラクチャーを開発するClaypot AIの共同創設者兼CEO。以前は、NVIDIA、Snorkel AI、Netflixに勤務し、世界最大級の組織による機械学習システムの開発とデプロイを手助けしてきた。スタンフォード大学の学生時代に、深層学習研究のためのTensorFlowの講座を作って教えていた。現在は同大学で「CS 329S:Machine Learning Systems Design」の教鞭を執っており、この授業の講義資料が本書のベースになっている。専門領域は、ソフトウェアエンジニアリングと機械学習が交差する領域。ソフトウェア開発部門(2019年)とデータサイエンスとAI部門(2020年)で二度LinkedIn Top Voicesに選ばれている

江川崇[エガワタカシ]
Smartium株式会社代表取締役。現場での機械学習関連技術の適用やエンジニアリングを手がけるソフトウェアデベロッパー。専門領域は自然言語処理。かつてはAndroidのデベロッパーとして2009年から2019年までAndroidのGoogle Developer Expert(旧:Google API Expert)を務めた

平山順一[ヒラヤマジュンイチ]
Automagi株式会社取締役開発部長。交換器の呼制御機能の開発から組み込み分野にて多くの開発経験をもつ。フロントからサーバーまで一貫して開発を行う。Automagi株式会社入社後に前身であるJibemobile株式会社期に、米国JibeMobileの開発に多く携わった(本データはこの書籍が刊行された当時に掲載されていたものです)
※書籍に掲載されている著者及び編者、訳者、監修者、イラストレーターなどの紹介情報です。

感想・レビュー

※以下の感想・レビューは、株式会社ブックウォーカーの提供する「読書メーター」によるものです。

jun

2
著者のノウハウが存分に詰め込まれている良書。MLシステムの構築・運用の経験不足を補ってくれる。2024/07/12

あやたふ

0
機械学習システムを作るにあたり設計から開発、デプロイ、運用まで一気通貫のベストプラクティスについてまとめられた本。通常この手の本は複数の著者が各章を担当する体制のものが多いが、この本は一人の著者が全部書いておりまずそれに驚いた。MLOps関連の知識を得たいという動機から読み始めたが他の章もかなりの読み応えでますます驚いた。日本語版だと最後に付録Aの章があり、いわゆる機械学習の受託開発における顧客とのコミュニケーションに起因するあるあるな問題や対処法などが紹介されており個人的に一番面白かった。2025/01/18

外部のウェブサイトに移動します

よろしければ下記URLをクリックしてください。

https://bookmeter.com/books/21430552
  • ご注意事項

    ご注意
    リンク先のウェブサイトは、株式会社ブックウォーカーの提供する「読書メーター」のページで、紀伊國屋書店のウェブサイトではなく、紀伊國屋書店の管理下にはないものです。
    この告知で掲載しているウェブサイトのアドレスについては、当ページ作成時点のものです。ウェブサイトのアドレスについては廃止や変更されることがあります。
    最新のアドレスについては、お客様ご自身でご確認ください。
    リンク先のウェブサイトについては、「株式会社ブックウォーカー」にご確認ください。

最近チェックした商品