出版社内容情報
機械学習システム構築に必要な
デザインパターンがここにある!
【本書の背景】
Pythonを用いた機械学習のモデル開発事例は多数ありますが、
そのモデルをビジネスやシステムに組み込み、運用する事例や方法論は多くありません。
そのため、AIを組み込んだ実装モデルをまとめた、
「機械学習システムのデザインパターン」に注目が集まっています。
【対象読者】
・AIエンジニア
・システムエンジニア
・機械学習を本番システムとして使うための開発、運用方法で悩んでいるエンジニアの方
【本書の概要】
本書は機械学習を有効活用するためにはシステムに組み込むための設計や
実装が必要と考え、機械学習システムのデザインパターンを集めて解説した書籍です。
機械学習システムのグランドデザインおよびPythonによる機械学習システムの実装例を説明しつつ、
機械学習を本番活用するための方法論や、運用、改善ノウハウについて解説します。
本書で扱うプラットフォームには、コードの再現実行を担保するため、
DockerとKubernetesを活用します。
機械学習の学習から評価、QAを行い、推論器をリリースして
運用するまでの一連の流れをアーキテクチャやコードとともに解説します。
【デザインパターンのサンプル】
本書で解説している実際のサンプルコードをGitHubからダウンロードして利用可能です。
【本書のゴール】
・機械学習を実用化する方法が学べる
・Pythonによる機械学習ワークフローおよびWebアプリケーション開発の概要を学べる
・機械学習を組み込んだシステムの運用ノウハウを得られる
・機械学習システムのトラブルシューティングや調査方法を学べる
【著者プロフィール】
澁井 雄介(しぶい・ゆうすけ)
株式会社ティアフォー所属。
MLOpsエンジニア、インフラエンジニア、ARエンジニア、ネコ2匹の飼い主。家に猫用ハンモックが4台ある。
本業で自動運転のためのMLOps基盤をKubernetesで開発しつつ、趣味でARとEdge AIを組み合わせて遊んでいる。
過去にはSIer、外資ソフトウェアベンダー、スタートアップで新規プロダクトの起ち上げ、大規模システム運用、チームマネジメントに従事。
前職メルカリにて機械学習をシス
内容説明
モデル、推論システム、品質、運用、管理…機械学習の実用化手法をデザインパターンで詳解!デザインパターンサンプル付。
目次
1 機械学習とMLOps(機械学習のシステムとは)
2 機械学習システムを作る(モデルを作る;モデルをリリースする;推論システムを作る)
3 品質・運用・管理(機械学習システムを運用する;機械学習システムの品質を維持する;End‐to‐EndなMLOpsシステムの設計)
著者等紹介
澁井雄介[シブイユウスケ]
株式会社ティアフォー所属。MLOpsエンジニア、インフラエンジニア、ARエンジニア。過去にはSIer、外資ソフトウェアベンダー、スタートアップで新規プロダクトの起ち上げ、大規模システム運用、チームマネジメントに従事。前職メルカリにて機械学習をシステムに組み込むデザインパターンを執筆、公開(本データはこの書籍が刊行された当時に掲載されていたものです)
※書籍に掲載されている著者及び編者、訳者、監修者、イラストレーターなどの紹介情報です。
感想・レビュー
※以下の感想・レビューは、株式会社ブックウォーカーの提供する「読書メーター」によるものです。
vinlandmbit
kaida6213
ireadertj
mim42
鴨川
-
- 洋書
- The M Word