出版社内容情報
本書は実践知を基にLightGBMの仕組みや実務への活用方法をハンズオン形式で学ぶ技術書です。LightGBMはレコード数が1,000万件を越える大規模データでも数時間でモデル学習でき、予測精度が高く、実装がシンプルという開発運用に適した特徴を兼ね揃えた機械学習アルゴリズムです。
本書の目標は以下の2つです。
目標1 LightGBMの理解ためには、逆説的ですが「LightGBM以外」の仕組みを具体的に理解する必要があると、筆者は考えています。そこで、本書は機械学習の基礎となる「線形回帰」、勾配ブースティングの基礎となる「決定木(回帰木)」の仕組みを最初に整理し、続いて、回帰木→勾配ブースティング→XGBoost→LightGBMとアルゴリズムごとの工夫(前提条件)を数式を交えて理解する構成にしています。
目標2 実務活用は探索的データ解析(EDA)、クロスバリデーション、特徴量エンジニアリング、ハイパーパラメータ最適化の精度改善の実装を通じて、実務で役立つ考え方や運用で注意すべき点を学べるようにハンズオンします。また、実務は精度の改善と並んで、予測値の説明性が大事になります。そこで、予測値を特徴量の貢献度で分解し、予測値の原因を分析します。
内容説明
勾配ブースティングの理論と実装を学ぶ!LightGBMは勾配ブースティングの1つで大規模データを学習でき、高精度の予測モデルを実装できます。本書は予測モデルの実装方法の解説だけでなく、モデルの運用で必要になる特徴量エンジニアリング、ハイパーパラメータ最適化、予測値可視化などの実装方法を解説しています。また、決定木→XGBoost→LightGBMへの発展についても、数式を基に丁寧に解説しています。
目次
第1章 予測モデルの概要(予測モデル;機械学習アルゴリズム ほか)
第2章 回帰の予測モデル(データ理解;線形回帰 ほか)
第3章 分類の予測モデル(データ理解;ロジスティック回帰 ほか)
第4章 回帰の予測モデル改善(データ理解;線形回帰 ほか)
第5章 LightGBMへの発展(回帰木の計算量;回帰木の勾配ブースティング ほか)
著者等紹介
毛利拓也[モウリタクヤ]
大学院で量子コンピュータの素子となる量子ビットの理論モデルを研究、論文を執筆し修了。SIerではエンジニアとして、基幹システム(SAP)の開発運用プロジェクトに従事。コンサルティング会社ではITコンサルタントとして基幹システムの導入および開発運用プロジェクトをリード。AIスタートアップではプロジェクトマネージャーとして機械学習システムの開発運用(MLOps)プロジェクトおよびMLOps基盤の構築プロジェクトをリード(本データはこの書籍が刊行された当時に掲載されていたものです)
※書籍に掲載されている著者及び編者、訳者、監修者、イラストレーターなどの紹介情報です。
感想・レビュー
※以下の感想・レビューは、株式会社ブックウォーカーの提供する「読書メーター」によるものです。
ぶう
K.T