• ポイントキャンペーン

基礎からわかる数学入門―数の発展から微分積分まで

  • ただいまウェブストアではご注文を受け付けておりません。
  • サイズ B6判/ページ数 455p/高さ 19cm
  • 商品コード 9784797375053
  • NDC分類 410
  • Cコード C0041

出版社内容情報

遂に復刊!! すべての人のための数学入門書

無理数・虚数・関数・不等式・指数対数・三角関数・極限・微分・積分……。
先生と二人の生徒との対話を通して、高校の授業でわからなかった数学のポイントが確実に理解できます。
用語の意味や数式展開も飛ばすことなく、じっくりていねいに解説しています。

大ロングセラー『数学入門』(岩波新書)などで著名な遠山啓が、
1960年代後半に高校生を対象に執筆した数学入門書の復刊です。
数学の基礎概念から高校で学ぶ微分積分までを、
平易で読みやすい文章と工夫された説明図でわかりやすく説明しています。
ユニークなスタイル(先生と生徒の対話形式)と、遠山啓一流の巧みな比喩を使った解説により、
数学が苦手な読者でも、豊かな数学の世界が理解できるようになることでしょう。
中学・高校の数学の再学習の書として、高校生はもちろん、大学生、社会人に最良の1冊です。

はしがき
第1章 集合と数
第2章 関 数
第3章 いろいろな関数
第4章 式とグラフ
第5章 分析と総合
第6章 収束と極限
第7章 微分
第8章 積分
数学を勉強する人のために

はしがき

第1章 集合と数
集合とは何か
自然数から有理数へ
有理数から複素数へ
練習問題

第2章 関 数
関数とは何か
関数の合成と逆関数
関数のいろいろな表わし方
練習問題

第3章 いろいろな関数
n次の多項式
指数関数と対数関数
練習問題

第4章 式とグラフ
関数の世界と図形の世界
三角関数
不等式
練習問題

第5章 分析と総合
分けること,つなぐこと
数学における「分析と総合」
微分積分のおいたち
関数を微分する
xnの微分
関数を積分する
微分と不定積分
練習問題

第6章 収束と極限
変化をとらえる
ε-δ論法
極限と加減乗除の入れかえ
連続的変化
練習問題

第7章 微分
和差積商の微分
合成関数と逆関数の微分
指数関数と対数関数の微分
三角関数の微分
練習問題

第8章 積分
積分の基本公式
置換積分
部分積分
定積分
積分できるか,できないか
積分の大小
積分の応用
練習問題

数学を勉強する人のために
問の解答
練習問題の解答

【著者紹介】
1909年、熊本県生まれ。東京大学数学科に入学、東北大学数学科を卒業。東京工業大学教授。民間教育団体「数学教育協議会」を結成、その委員長を長くつとめ、水道方式や量の理論などを提唱。また、雑誌『数学セミナー』『ひと』などの創刊・編集にも関わり、数学を広く市民へ啓蒙し、教育現場にも大きな影響を与えた。1979年、没。著書には『数学入門(上・下)』『現代数学対話』(岩波新書)『現代数学入門』(ちくま学芸文庫)他多数。

内容説明

無理数・虚数・関数・不等式・指数対数・三角関数・極限・微分・積分…。先生と二人の生徒との対話を通して、高校の授業ではわからなかった数学のポイントが確実に理解できます。用語の意味や数式展開も飛ばすことなく、じっくりていねいに解説しています。高校生・大学生はもちろん、数学を学び直したい社会人に、最良の1冊です。

目次

第1章 集合と数
第2章 関数
第3章 いろいろな関数
第4章 式とグラフ
第5章 分析と総合
第6章 収束と極限
第7章 微分
第8章 積分

著者等紹介

遠山啓[トオヤマヒラク]
1909年、熊本県生まれ。東京大学数学科に入学するも退学、のち東北大学数学科を卒業。1949年、東京工業大学教授。民間教育団体「数学教育協議会」を結成、その委員長を長くつとめ、水道方式や量の理論などを提唱。また、雑誌『数学セミナー』『ひと』などの創刊・編集にも関わり、数学を広く市民へ啓蒙し、教育現場にも大きな影響を与えた。1979年、没(本データはこの書籍が刊行された当時に掲載されていたものです)
※書籍に掲載されている著者及び編者、訳者、監修者、イラストレーターなどの紹介情報です。

最近チェックした商品