出版社内容情報
SiCやGaNなどWBGパワー半導体の高温・高速・高耐圧動作を支える熱設計技術を解説し、EV向け車載パワーモジュールの高出力密度化に迫る1冊。
【目次】
第1章 実装技術の現状と展望
1 パワーデバイス高性能化の最前線と今後の展望
1.1 はじめに
1.2 SiC
1.3 RC-IGBT
1.4 RB-IGBT
1.5 あとがき
2 SiCパワー半導体の現状と周辺材料への期待
2.1 はじめに
2.2 基本となる実装構造
2.3 SiC素子の性能を引き出す実装技術
2.4 SiCパワー素子の先進実装例
2.5 おわりに
3 パワー半導体実装用接合技術の開発動向と特性評価
3.1 接合技術の開発動向
3.2 接合部の特性評価
4 車載電子製品およびパワーデバイスの実装・放熱耐熱技術
4.1 車載電子製品への要求
4.2 車載電子製品の特長
4.3 車載電子製品の小型化技術
4.4 車載電子製品の実装技術と熱設計
4.5 車載電子製品における小容量パワーデバイスの実装技術
4.6 電動車両におけるインバータのパワーデバイス実装・放熱技術
4.7 将来に向けて
5 モビリティの電動化におけるSiCパワーデバイスによる性能向上への期待
5.1 パワーデバイスに求められる動作
5.2 パワーデバイスの発展の歴史
5.3 高性能が製品競争力となる用途
5.4 IGBTとSJ MOSFETの特徴
5.5 SiC MOSFETの特徴
5.6 短絡耐量─パワーデバイスに特有の要求仕様─
5.7 SiC MOSFETの性能の定量的比較─オン抵抗─
5.8 SiC MOSFETの性能の定量的比較─ターンオフロス─
5.9 SiC MOSFETの性能の定量的比較─ターンオフ時間─
5.10 今後の方向性とまとめ
第2章 はんだ・焼結結合
1 パワー半導体向け高温鉛フリーはんだ接合技術の開発
1.1 はじめに
1.2 パワー半導体素子を支える接合材料
1.3 高温鉛はんだと環境規制
1.4 環境規制対応 高温鉛フリーはんだ
1.5 パワー半導体向け高温鉛フリーはんだ
1.6 実装材料の今後
2 次世代パワーモジュールのための耐熱実装技術─Ag焼結接合の可能性と展開─
2.1 焼結接合
2.2 Ag焼結接合技術
2.3 Agの低温焼結メカニズム
2.4 これから
3 ナノ-マイクロサイズCu粒子を利用した高耐熱接合技術
3.1 はじめに
3.2 ナノ粒子による焼結型接合プロセスの概要
3.3 Cuナノ粒子を利用した焼結型接合
3.4 マイクロサイズのCu粒子を利用した焼結型接合
3.5 まとめ
第3章 樹脂材料
1 電動自動車インホイールモータ内蔵パワーモジュールの熱機械設計
1.1 はじめに



