出版社内容情報
【読者対象】
・線形代数学や微積分学を学んだ確率的画像処理に興味を持つ学部生
・画像処理を学んだ工学部生,大学院生
【書籍の特徴】
本書はマルコフ確率場と呼ばれる確率モデルを用いた画像処理に関する入門書である.グラフ理論,確率分布といったマルコフ確率場へとつながる基礎的内容から始め,ベイズ推定に基づく画像処理の方法であるベイズ画像処理の基本的な方法論について解説している.
【各章について】
1章:画像処理の基本的な事項について解説している.本章の内容は通常の画像処理の授業でも扱われる内容と思われる.
2章と3章:以降の章で必要となるグラフ理論と数値最適化の基礎的な内容を紹介している.
4章と5章:ベイズ画像処理の基礎となる確率モデルの扱い方について解説する.確率分布の扱い方と様々な有名な確率分布を紹介し,事後分布を用いたベイズ推定の方法について解説している.
6章:ベイズ画像処理でよく用いられる確率的グラフィカルモデル,特にマルコフ確率場について扱う.無向グラフ表現をもつ確率分布であるマルコフ確率場を定義し,ポテンシャル関数を用いたマルコフ確率場の構成法について解説している.
7章:マルコフ確率場に対する確率的近似計算法である平均場近似と確率伝搬法について解説している.カルバック-ライブラ情報量を導入し,確率分布の置き換えによる近似計算法を導出している.
8章:二値画像という簡単な画像形式を題材としてベイズ画像処理の基本的な流れを解説する.ベイズの定理を用いた事後分布の導出法を紹介し,事後分布に基づいてどのように画像処理を行うのかを解説している.
9章:画像処理問題におけるパラメータの扱い方について扱う.確率モデルを用いた場合に観測画像から直接パラメータを推定する方法について解説している.
10章と11章:一般的な画像形式に対する応用である.8章と9章で扱った内容を用いて,一般的な形式の画像に対してベイズ画像処理を行う場合にどのような方針があるのか,その一例を紹介している.
【著者からのメッセージ】
確率モデルを用いた画像処理の方法は画像処理,グラフ理論,確率分布等様々な分野の知識を必要とし,初学者には学習しづらい面があります.本書ではベイズ画像処理の方法を学習するのに必要と思われる各分野の基礎部分はできるだけ盛り込むように心がけました.本書が画像処理を学ぶ全ての方々の一助になれば幸いです.
【キーワード】
確率モデル,画像処理,ベイズ推定,マルコフ確率場
【目次】
☆発行前情報のため,一部変更となる場合がございます
1.画像処理
1.1 画像の数値表現
1.2 画像数値の管理
1.3 画像処理
1.4 畳み込みとフィルタ
1.5 平滑化フィルタ
1.6 画像処理結果の評価
2.グラフ理論
2.1 グラフ
2.2 部分グラフと誘導部分グラフ
2.3 無向グラフ
2.4 有向グラフ
2.5 重み付きグラフ
2.6 最大流問題
2.7 残容量グラフ
2.8 プリフロープッシュ法
2.9 最小カット問題
3.数値最適化法
3.1 非線形計画問題
3.2 凸計画問題
3.3 関数の勾配
3.4 ヘッセ行列
3.5 最急降下法と最急上昇法
3.6 共役勾配法
3.7 ヤコビ法とガウス・ザイデル法
3.8 反復法と縮小写像
4.確率分布
4.1 確率質量関数と確率密度関数
4.2 確率質量関数と確率密度関数
4.3 周辺分布と和の規則
4.4 条件付き分布と積の規則
4.5 ベイズの定理
4.6 期待値
4.7 確率変数の変数変換
4.8 カテゴリカル分布
4.9 正規分布
4.10 多次元正規分布
4.11 ガンマ分布
4.12 ベータ分布
4.13 スチューデントのt分布
4.14 混合分布
5.ベイズ推定
5.1 ベイズ推定
5.2 事後分布の設計
5.3 共役事前分布
5.4 正規分布の平均に関する共役事前分布
5.5 正規分布の精度に関する共役事前分布
5.6 正規分布の平均と精度に関する共役事前分布
5.7 混合正規分布と正規分布,カテゴリカル分布との関係
5.8 t分布と正規分布,ガンマ分布との関係
6.確率的グラフィカルモデル
6.1 条件付き独立性
6.2 無向グラフの分離
6.3 確率分布の無向グラフ表現とマルコフ性
6.4 マルコフ確率場
6.5 ギブス確率場
6.6 マルコフ確率場とギブス確率場の等価性
6.7 ベイジアンネットワーク
7.確率分布の近似計算法
7.1 カルバック・ライブラ情報量
7.2 確率分布の因子グラフ表現
7.3 変分自由エネルギー
7.4 平均場近似
7.5 確率伝搬法
7.6 因子グラフと確率伝搬法
8.ベイズ画像処理の基礎
8.1 ベイズ推定と画像処理
8.2 二値画像処理の例:問題設定
8.3 二値画像処理の例:ノイズ過程のモデル化
8.4 二値画像処理の例:事前分布のモデル化
目次
1 画像処理
2 グラフ理論
3 数値最適化法
4 確率分布
5 ベイズ推定
6 確率的グラフィカルモデル
7 確率分布の近似計算法
8 ベイズ画像処理の基礎
9 パラメータの扱い
10 離散マルコフ確率場を用いた確率的ノイズ除去モデル
11 ガウシアングラフィカルモデルを用いた確率的ノイズ除去モデル
付録
著者等紹介
片岡駿[カタオカシュン]
2009年 東北大学工学部電気情報・物理工学科(情報工学コース)卒業。2018年 小樽商科大学准教授(本データはこの書籍が刊行された当時に掲載されていたものです)
※書籍に掲載されている著者及び編者、訳者、監修者、イラストレーターなどの紹介情報です。



