統計学One Point<br> 推薦システム―マトリクス分解の多彩なすがた

個数:
電子版価格
¥2,530
  • 電子版あり

統計学One Point
推薦システム―マトリクス分解の多彩なすがた

  • ウェブストアに3冊在庫がございます。(2025年11月16日 21時13分現在)
    通常、ご注文翌日~2日後に出荷されます。
  • 出荷予定日とご注意事項
    ※上記を必ずご確認ください

    【ご注意事項】 ※必ずお読みください
    ◆在庫数は刻々と変動しており、ご注文手続き中に減ることもございます。
    ◆在庫数以上の数量をご注文の場合には、超過した分はお取り寄せとなり日数がかかります。入手できないこともございます。
    ◆事情により出荷が遅れる場合がございます。
    ◆お届け日のご指定は承っておりません。
    ◆「帯」はお付けできない場合がございます。
    ◆画像の表紙や帯等は実物とは異なる場合があります。
    ◆特に表記のない限り特典はありません。
    ◆別冊解答などの付属品はお付けできない場合がございます。
  • ●3Dセキュア導入とクレジットカードによるお支払いについて
    ●店舗受取サービス(送料無料)もご利用いただけます。
    ご注文ステップ「お届け先情報設定」にてお受け取り店をご指定ください。尚、受取店舗限定の特典はお付けできません。詳細はこちら
  • サイズ A5判/ページ数 211p/高さ 21cm
  • 商品コード 9784320112735
  • NDC分類 411.3
  • Cコード C3341

出版社内容情報

本書で特徴的なのは、推薦システムの本質は何かということについて、予備知識がなくても理解できるように、例を用いながら要点を簡潔に述べようとしている点にある。なかでも、マトリクスの空欄を埋めるマトリクス分解アルゴリズムは本書において中心的な位置を占めている。
このアルゴリズムは、単に商品販売促進に使われているというだけでなく、感染症リスク予測や項目反応理論など医療や教育などの分野へ応用することも可能であり、本書ではさまざまな分野に応用される推薦システムアルゴリズムの多彩な姿も紹介している。そのうえで、一般的な推薦システムに使われる協調フィルタリングやモデルベース、コンテンツベース、知識ベース、アンサンブルなどについても説明している。

推薦システムは、決してある専門的な分野に特化して閉じた領域の中で成立するような固定化されたものではなく、数学、統計、情報分野のさまざまな要素がネットワークとして結び付いて有機的に機能しているものである。そこで、理工系大学での数理的な知識がなくても本書への理解が容易になるように、線形代数の基礎、統計的な基礎、数値計算や最適化法にかかわる基礎について重要と思われるところは本書の付録で簡潔に説明した。
推薦システムの仕組みがわかれば推薦システムでできることもわかり、さらにいろいろな場面への適用も想像できる。本書はそのような本である。

目次

第1章 推薦システムとは何か
第2章 マトリクス分解法の多彩な機能
第3章 最近傍ベース協調フィルタリング
第4章 モデルベース協調フィルタリング
第5章 コンテンツベースと知識ベース
第6章 ハイブリッドとアンサンブル
第7章 その他の方法
第8章 推薦システムの応用例
付録A:推薦システムの数理的基礎
付録B:項目反応理論

著者等紹介

廣瀬英雄[ヒロセヒデオ]
1977年九州大学理学部数学科卒業。現在、久留米大学バイオ統計センター客員教授、中央大学研究開発機構教授、九州工業大学名誉教授、工学博士。専門はデータサイエンス(本データはこの書籍が刊行された当時に掲載されていたものです)
※書籍に掲載されている著者及び編者、訳者、監修者、イラストレーターなどの紹介情報です。

最近チェックした商品