機械学習を解釈する技術―予測力と説明力を両立する実践テクニック

個数:

機械学習を解釈する技術―予測力と説明力を両立する実践テクニック

  • ウェブストアに39冊在庫がございます。(2025年09月02日 12時34分現在)
    通常、ご注文翌日~2日後に出荷されます。
  • 出荷予定日とご注意事項
    ※上記を必ずご確認ください

    【ご注意事項】 ※必ずお読みください
    ◆在庫数は刻々と変動しており、ご注文手続き中に減ることもございます。
    ◆在庫数以上の数量をご注文の場合には、超過した分はお取り寄せとなり日数がかかります。入手できないこともございます。
    ◆事情により出荷が遅れる場合がございます。
    ◆お届け日のご指定は承っておりません。
    ◆「帯」はお付けできない場合がございます。
    ◆画像の表紙や帯等は実物とは異なる場合があります。
    ◆特に表記のない限り特典はありません。
    ◆別冊解答などの付属品はお付けできない場合がございます。
  • ●3Dセキュア導入とクレジットカードによるお支払いについて
    ●店舗受取サービス(送料無料)もご利用いただけます。
    ご注文ステップ「お届け先情報設定」にてお受け取り店をご指定ください。尚、受取店舗限定の特典はお付けできません。詳細はこちら
  • サイズ A5判/ページ数 255p/高さ 22cm
  • 商品コード 9784297122263
  • NDC分類 007.1
  • Cコード C3055

出版社内容情報

機械学習の研究開発が急速な勢いで進んでいます。理論研究はもちろん、機械学習手法が実装されたオープンソースのパッケージ開発も進み、それらを実務で利用するためのノウハウも蓄積されてきています。結果として、機械学習をはじめたばかりの入門者でも比較的高い精度の予測モデルを構築できるようになりました。
Deep Learning

内容説明

あらゆる予測モデルを解釈する4つの手法PFI、PD、ICE、SHAP/特徴量の重要度/特徴量と予測値の関係性/インスタンスごとの異質性/予測の理由―そのモデルの振る舞いを説明できますか?

目次

1章 機械学習の解釈性とは
2章 線形回帰モデルを通して「解釈性」を理解する
3章 特徴量の重要度を知る―Permutation Feature Importance
4章 特徴量と予測値の関係を知る―Partial Dependence
5章 インスタンスごとの異質性をとらえる―Individual Conditional Expectation
6章 予測の理由を考える―SHapley Additive exPlanations
付録A Rによる分析例―tidymodelsとDALEXで機械学習モデルを解釈する
付録B 機械学習の解釈手法で線形回帰モデルを解釈する

著者等紹介

森下光之助[モリシタミツノスケ]
東京大学大学院経済学研究科で計量経済学を用いた実証分析を学び、経済学修士号を取得。株式会社グリッドに入社し、機械学習を用いたデータ分析プロジェクトに従事。現在はTVISION INSIGHTS株式会社で執行役員兼データ・テクノロジー本部副本部長。テレビデータの分析、社内データの利活用の促進、データ部門のマネジメントを行っている(本データはこの書籍が刊行された当時に掲載されていたものです)
※書籍に掲載されている著者及び編者、訳者、監修者、イラストレーターなどの紹介情報です。

最近チェックした商品