機械学習・統計処理のための数学入門―基本演算からRプログラミングまで

個数:

機械学習・統計処理のための数学入門―基本演算からRプログラミングまで

  • 提携先に在庫がございます【僅少】
    通常、5~7日程度で出荷されます。
    ※納期遅延や、在庫切れで解約させていただく場合もございます。
    (※複数冊ご注文はお取り寄せとなります)
  • 出荷予定日とご注意事項
    ※上記を必ずご確認ください

    【出荷予定日】
    通常、5~7日程度で出荷されます。

    【ご注意事項】 ※必ずお読みください
    ◆在庫状況は刻々と変化しており、ご注文手続き中やご注文後に在庫切れとなることがございます。
    ◆出荷予定日は確定ではなく、表示よりも出荷が遅れる場合が一部にございます。
    ◆複数冊をご注文の場合には全冊がお取り寄せとなります。お取り寄せの場合の納期や入手可否についてはこちらをご参照ください。
    ◆お届け日のご指定は承っておりません。
    ◆「帯」はお付けできない場合がございます。
    ◆画像の表紙や帯等は実物とは異なる場合があります。
    ◆特に表記のない限り特典はありません。
    ◆別冊解答などの付属品はお付けできない場合がございます。
  • ●3Dセキュア導入とクレジットカードによるお支払いについて
    ●店舗受取サービス(送料無料)もご利用いただけます。
    ご注文ステップ「お届け先情報設定」にてお受け取り店をご指定ください。尚、受取店舗限定の特典はお付けできません。詳細はこちら
  • サイズ A5判/ページ数 223p/高さ 22cm
  • 商品コード 9784297119683
  • NDC分類 007.1
  • Cコード C3055

出版社内容情報

数学の素養があるだけではデータサイエンスのプロとは言えません。なぜなら、実際の数理モデル開発やデータ分析では、組み合わせ方やプログラミングの知識が必要になるためです。また、データ分析では、数値微分・数値積分の知識がプログラミングで計算する際には非常に役立ちます。そこで本書では、数値計算やパラメータ計算法などを説明したあとに、応用編として現場で利用されるデータ分析方法を取り上げます。具体的には「対数尤度(ゆうど)の最大化法と重回帰」「一般化線形モデル」「多クラス回帰モデル」「Bradley-Terry model」「2元表の解析モデル」「生存時間解析(ワイブル分布)」で、Rによる数値計算のプログラムも併記しています。本書を活用していただくと、例えば機械学習モデルのパラメータを導く際に必要な二階偏微分を要素とする行列(ヘッセ行列など)の計算が非常にラクになり、データサイエンスにおけるプログラミングで数値微分・数値積分や数値計算そのものの重要さを再確認できるでしょう。
なお、本書は、大学の初等数学程度の知識を前提としています。

目次

第1章 Rプログラミング環境の準備
第2章 数値計算
第3章 ニュートン法・反復法
第4章 重回帰分析
第5章 一般化線形モデル
第6章 多クラスロジスティック
第7章 Bradley‐Terry model
第8章 主成分分析
第9章 2元表の解析モデル
第10章 比例危険度モデル(ワイブル分布)

最近チェックした商品