出版社内容情報
ビジネスで利用されるデータの多くは、その施策の意思決定を行う人物や組織の目的にそった活動の延長上で作られています。具体的には、DM送付などの広告施策であれば、担当者はユーザの反応率を上げるために、反応しやすいであろうユーザに対してのみDMを発送します。ここで発生したデータでDMの効果を計る場合、単純にDMを受け取っているか否かで結果を比較することは、DMの効果以外にも意図的にリストされたユーザの興味や関心を含んでしまうことになります。
データが生まれるプロセスに人の意思が関わる場合、単純な集計では判断ミスとなる可能性があります。わずかな計算の狂いでも後々のビジネスにおいて大きな影響を及ぼすことになるため、バイアスのない状態で効果検証できることが望まれるのです。
本書では「単純に比較すると間違った結論に導くデータ」から、より正しい結果を導くための分析手法と考え方を提供します。計量経済学における効果とは何か? を提示し、RCT(ランダム化比較試験)がいかに理想的な方法かを説明し、RCTができない場合でも因果推論を用いてRCTの再現が可能だということを説明していきます。
第1章 ランダム化比較試験
第2章 回帰分析
第3章 傾向スコア
第4章 差分の差分法
第5章 回帰不連続デザイン
付録 RとRStudioの基礎
内容説明
「バイアス」を取り除くための技術。データによる裏付けがないことで、効果の質が問題になることは少ない。正しく比較ができていないため、因果関係を示すことができていないことの方が多い。
目次
嘘っぱちの効果とそれを見抜けないデータ分析
1章 セレクションバイアスとRCT
2章 介入効果を測るための回帰分析
3章 傾向スコアを用いた分析
4章 差分の差分法(DID)とCausalImpact
5章 回帰不連続デザイン(RDD)
付録 RとRStudioの基礎
因果推論をビジネスにするために
著者等紹介
安井翔太[ヤスイショウタ]
2013年にNorwegian School of Economicsにて経済学修士号を取得し株式会社サイバーエージェント入社。入社後は広告代理店にて広告効果検証等を行い、その後2015年にアドテクスタジオへ異動。以降はDMP・DSP・SSPと各種のアドテクプロダクトにおいて、機械学習に関する業務やデータを元にした意思決定のコンサルティングを担当。現在はAILabの経済学チームのリーダーとして経済学と機械学習の融合に関する研究を行う一方で、Data Science Centerの副所長として社内のデータサイエンスプロジェクトのコンサルティングも担当(本データはこの書籍が刊行された当時に掲載されていたものです)
※書籍に掲載されている著者及び編者、訳者、監修者、イラストレーターなどの紹介情報です。
感想・レビュー
※以下の感想・レビューは、株式会社ブックウォーカーの提供する「読書メーター」によるものです。
kaida6213
lapislazuli
セイタ
yyhhyy
shin