出版社内容情報
グラフニューラルネットワークの理論から応用先、実装の知識まで修得できる!
深層学習をグラフ(ネットワーク)で表される構造データに対して適用するための研究が盛んになっています。グラフ中の頂点やグラフ全体を高精度に分類できれば、高度な画像認識、推薦システム、交通量予測、化合物分類、さらには新型コロナウイルス(COVID-19)への対処のための応用なども期待できます。
本書では、グラフニューラルネットワークの基本的な知識および研究事例について説明し、PyTorchによる実装について紹介するとともに、今後の学習のための情報源についても解説します。
内容説明
深層学習でグラフを解析する世界最前線の研究を1冊で学ぶ!実社会への応用が期待される注目の技術。
目次
第1章 グラフニューラルネットワークとは
第2章 グラフエンベディング
第3章 グラフにおける畳み込み
第4章 関連トピック
第5章 実装のための準備
第6章 PyTorch Geometricによる実装
第7章 今後の学習に向けて
著者等紹介
村田剛志[ムラタツヨシ]
東京工業大学情報理工学院情報工学系知能情報コース教授。1990年東京大学理学部情報科学科卒業。1992年同大学院理学系研究科修士課程修了。東京工業大学工学部助手、群馬大学工学部助手、同講師、国立情報学研究所助教授、科学技術振興事業団さきがけ研究21研究員(兼任)、東京工業大学大学院情報理工学研究科助教授を経て2020年より現職。博士(工学)。人工知能、ネットワーク科学、機械学習に関する研究に従事。人工知能学会、情報処理学会、日本ソフトウェア科学会、AAAI、ACM、各会員(本データはこの書籍が刊行された当時に掲載されていたものです)
※書籍に掲載されている著者及び編者、訳者、監修者、イラストレーターなどの紹介情報です。
-
- 和書
- 疾走 〈下〉 角川文庫