出版社内容情報
◆生成AIを大幅加筆し,好評テキストが改訂!◆
・いますぐ身につけるべき「データサイエンス」「データエンジニアリング」「AI」の基礎知識がここにある!
・「数理・データサイエンス・AI(応用基礎レベル)モデルカリキュラム」に完全準拠した公式カラーテキスト!
・カラーで見やすく、練習問題も充実!
【主な内容】
1章 データサイエンス基礎
1.1 データ駆動型社会とデータ分析の進め方 (久野遼平)
1.2 データの記述 (宿久 洋)
1.3 データの可視化 (宿久 洋・久野遼平)
1.4 データ分析の手法 (原 尚幸)
1.5 数学基礎 (清 智也)
2章 データエンジニアリング基礎
2.1 ビッグデータとデータエンジニアリング (内田誠一)
2.2 データ表現、プログラミング基礎、アルゴリズム基礎 (辻 真吾)
2.3 データ収集と加工、データベース (森畑明昌)
2.4 ITセキュリティ (宮地充子)
3章 AI基礎
3.1 AIと社会 (松原 仁)
3.2 機械学習の基礎と予測手法 (赤穂昭太郎)
3.3 深層学習の基礎 (今泉允聡)
3.4 ロボット、認識、言語 (高野 渉)
3.5 生成AI(岡﨑 直観)
内容説明
いますぐ身につけるべき「データサイエンス」「データエンジニアリング」「AI」の基礎知識がここにある!生成AIを大幅加筆し、好評テキストが改訂!
目次
第1章 データサイエンス基礎(データ駆動型社会とデータ分析の進め方;データの記述;データの可視化;データ分析の手法;数学基礎)
第2章 データエンジニアリング基礎(ビッグデータとデータエンジニアリング;データ表現、プログラミング基礎、アルゴリズム基礎;データの収集と加工、データベース;ITセキュリティ)
第3章 AI基礎(AIと社会;機械学習の基礎と予測手法;深層学習の基礎;ロボット、認識、言語;生成AI)
著者等紹介
北川源四郎[キタガワゲンシロウ]
理学博士。1974年東京大学大学院理学系研究科博士課程中途退学。現在、統計数理研究所名誉教授、総合研究大学院大学名誉教授
竹村彰通[タケムラアキミチ]
Ph.D.。1982年スタンフォード大学統計学部Ph.D.修了。現在、滋賀大学学長(本データはこの書籍が刊行された当時に掲載されていたものです)
※書籍に掲載されている著者及び編者、訳者、監修者、イラストレーターなどの紹介情報です。