未来のエネルギーシステムにおける深層機械学習の応用<br>Applications of Deep Machine Learning in Future Energy Systems

個数:1
紙書籍版価格
¥41,416
  • 電子書籍
  • ポイントキャンペーン

未来のエネルギーシステムにおける深層機械学習の応用
Applications of Deep Machine Learning in Future Energy Systems

  • 著者名:Khooban, Mohammad-Hassan (EDT)
  • 価格 ¥33,129 (本体¥30,118)
  • Elsevier(2024/08/20発売)
  • 冬の読書を楽しもう!Kinoppy 電子書籍・電子洋書 全点ポイント25倍キャンペーン(~1/25)
  • ポイント 7,525pt (実際に付与されるポイントはご注文内容確認画面でご確認下さい)
  • 言語:ENG
  • ISBN:9780443214325
  • eISBN:9780443214318

ファイル: /

Description

Applications of Deep Machine Learning in Future Energy Systems pushes the limits of current Artificial Intelligence techniques to present deep machine learning suitable for the complexity of sustainable energy systems.The first two chapters take the reader through the latest trends in power engineering and system design and operation, before laying out the current AI approaches and our outstanding limitations. Later chapters provide in-depth accounts of specific challenges and the use of innovative third-generation machine learning, including neuromorphic computing, to resolve issues from security to power supply.An essential tool for the management, control, and modelling of future energy systems, Applications of Deep Machine Learning maps a practical path towards AI capable of supporting sustainable energy.- Clarifies the current state and future trends of energy system machine learning and the pitfalls facing our transitioning systems- Provides guidance on 3rd-generation AI tools for meeting the challenges of modeling and control in modern energy systems- Includes case studies and practical examples of potential applications to inspire and inform researchers and industry developers

Table of Contents

1. Introduction2. Artificial intelligence and Machine learning in Future Energy Systems (State-of-Art, future development)Jalal Heidary3. Digital Twins-Assisted Design of Next-Generation DC MicrogridMeysam Gheisarnejad, Maryam Homayounzadeh, Burak Yildirim4. Deep Learning-Based Procedure for Profit Maximization of EV Charging StationsMohammad Hassan Khooban, Peyman Razmi, MASOUMEH SEYEDYAZDI5. Deep Frequency Control of Power Grids Under Cyber AttacksMohammad Aghamohammadi, jalal heidary, Soroush Oshnoei6. Application of Q-Learning in Stabilization of Multi Carrier Energy SystemsMeysam Gheisarnejad, Maryam Homayounzadeh, Burak Yildirim7. Design of Next-Generation of 5G Data Center Power Supply based on AIMohammad Hassan Khooban, Meysam Gheisarnejad8. Smart EV Battery Charger Based on Deep Machine LearningMohammad Hassan Khooban, Jalil Boudjadar, Mehdi Rafiei9. Machine learning in Talkative PowerMohammad Hassan Khooban, Zahra Ghahraman Izadi, Ali Mousavi10. Advanced Control of Power Electronics-based Machine LearningMaryam Homayounzadeh, Meysam Gheisarnejad, Mohamadreza Homayounzade, Mohammad Hassan Khooban11. Multi-Level Energy Management and Optimal Control System in Smart Cities Based on Deep Machine LearningJavid Ghafourian, Atefe Hedayatnia, Ahmed Al-Durra, Reza Sepehrzad

最近チェックした商品