Information Theoretic Learning : Renyi's Entropy and Kernel Perspectives

個数:1
紙書籍版価格
¥47,081
  • 電子書籍

Information Theoretic Learning : Renyi's Entropy and Kernel Perspectives

  • 著者名:Principe, Jose C.
  • 価格 ¥39,157 (本体¥35,598)
  • Springer(2010/04/06発売)
  • ポイント 355pt (実際に付与されるポイントはご注文内容確認画面でご確認下さい)
  • 言語:ENG
  • ISBN:9781441915696
  • eISBN:9781441915702

ファイル: /

Table of Contents

Information Theory, Machine Learning, and Reproducing Kernel Hilbert Spaces.- Renyi’s Entropy, Divergence and Their Nonparametric Estimators.- Adaptive Information Filtering with Error Entropy and Error Correntropy Criteria.- Algorithms for Entropy and Correntropy Adaptation with Applications to Linear Systems.- Nonlinear Adaptive Filtering with MEE, MCC, and Applications.- Classification with EEC, Divergence Measures, and Error Bounds.- Clustering with ITL Principles.- Self-Organizing ITL Principles for Unsupervised Learning.- A Reproducing Kernel Hilbert Space Framework for ITL.- Correntropy for Random Variables: Properties and Applications in Statistical Inference.- Correntropy for Random Processes: Properties and Applications in Signal Processing.

最近チェックした商品