Description
• Updated edition of a best-selling title • Author brings 25 years experience to the work • Addresses the key issues of economy and environment Marine pipelines for the transportation of oil and gas have become a safe and reliable way to exploit the valuable resources below the world's seas and oceans. The design of these pipelines is a relatively new technology and continues to evolve in its quest to reduce costs and minimise the effect on the environment. With over 25years experience, Professor Yong Bai has been able to assimilate the essence of the applied mechanics aspects of offshore pipeline system design in a form of value to students and designers alike. It represents an excellent source of up to date practices and knowledge to help equip those who wish to be part of the exciting future of this industry.
Table of Contents
Table of contentsForeword Foreword to "Pipelines and Risers" Book Preface Part I: Mechanical Design Chapter 1 Introduction 1.1 Introduction 1.2 Design Stages and Process 1.3 Design Through Analysis (DTA) 1.4 Pipeline Design Analysis 1.5 Pipeline Simulator 1.6 References Chapter 2 Wall-thickness and Material Grade Selection 2.1 Introduction 2.2 Material Grade Selection 2.3 Pressure Containment (hoop stress) Design 2.4 Equivalent Stress Criterion 2.5 Hydrostatic Collapse 2.6 Wall Thickness and Length Design for Buckle Arrestors 2.7 Buckle Arrestor Spacing Design 2.8 References Chapter 3 Buckling/Collapse of Deepwater Metallic Pipes 3.1 Introduction 3.2 Pipe Capacity under Single Load 3.3 Pipe Capacity under Couple Load 3.4 Pipes under Pressure Axial Force and Bending 3.5 Finite Element Model 3.6 References Chapter 4 Limit-state based Strength Design 4.1 Introduction 4.2 Out of Roundness Serviceability Limit 4.3 Bursting 4.4 Local Buckling/Collapse 4.5 Fracture 4.6 Fatigue 4.7 Ratcheting 4.8 Dynamic Strength Criteria 4.9 Accumulated Plastic Strain 4.10 Strain Concentration at Field Joints Due to Coatings 4.11 References Part II: Pipeline Design Chapter 5 Soil and Pipe Interaction 5.1 Introduction 83 5.2 Pipe Penetration in Soil 83 5.3 Modeling Friction and Breakout Forces 5.4 References Chapter 6 Hydrodynamics around Pipes 6.1 Wave Simulators 6.2 Choice of Wave Theory 6.3 Mathematical Formulations Used in the Wave Simulators 6.4 Steady Currents 6.5 Hydrodynamic Forces 6.6 References Chapter 7 Finite Element Analysis of In-situ Behavior 7.1 Introduction 101 7.2 Description of the Finite Element Model 7.3 Steps in an Analysis and Choice of Analysis Procedure 7.4 Element Types Used in the Model 7.5 Non-linearity and Seabed Model 7.6 Validation of the Finite Element Model 7.7 Dynamic Buckling Analysis 7.8 Cyclic In-place Behaviour during Shutdown Operations 7.9 References Chapter 8 Expansion, Axial Creeping, Upheaval/Lateral Buckling 8.1 Introduction 8.2 Expansion 8.3 Axial Creeping of Flowlines Caused by Soil Ratcheting 8.4 Upheaval Buckling 8.5 Lateral Buckling 8.6 Interaction between Lateral and Upheaval Buckling 8.7 References Chapter 9 On-bottom Stability 9.1 Introduction 9.2 Force Balance: the Simplified Method 9.3 Acceptance Criteria 9.4 Special Purpose Program for Stability Analysis 9.5 Use of FE Analysis for Intervention Design 9.6 References Chapter 10 Vortex-induced Vibrations (VIV) and Fatigue 10.1 Introduction 10.2 Free-span VIV Analysis Procedure 10.3 Fatigue Design Criteria 10.4 Response Amplitude 10.5 Modal Analysis 10.6 Example Cases 10.7 References Chapter 11 Force Model and Wave Fatigue 11.1 Introduction 11.2 Fatigue Analysis 11.3 Force Model 11.4 Comparisons of Frequency Domain and Time Domain Approaches 11.5 Conclusions and Recommendations 11.6 References Chapter 12 Trawl Impact, Pullover and Hooking Loads 12.1 Introduction 12.2 Trawl Gears 12.3 Acceptance Criteria 12.4 Impact Response Analysis 12.5 Pullover Loads 12.6 Finite Element Model for Pullover Response Analyses 12.7 Case Study 12.
-
- DVD
- お熱い夜をあなたに