機械学習

個数:1
  • 電子書籍
  • 特価
  • ポイントキャンペーン

機械学習

  • 著者名:岡留剛【著】
  • 価格 ¥5,500(本体¥5,000)
  • 特価 ¥2,750(本体¥2,500)
  • 共立出版(2023/01発売)
  • 2025→2026年!Kinoppy電子書籍・電子洋書全点ポイント30倍キャンペーン(~1/1)
  • ポイント 750pt (実際に付与されるポイントはご注文内容確認画面でご確認下さい)

ファイル: /

内容説明

※この電子書籍は固定レイアウト型で配信されております。固定レイアウト型は文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。

本書は、古典機械学習ともよぶべき題材に的を絞り、考え方をできるだけ詳細に記述した教科書である。本書では、機械学習全体の網羅や、深層学習を中心に据えた説明は意図していない。大量のデータが存在する対象、あるいはその近傍の対象に対しては、深層学習はきわめて高性能を発揮する。しかし、少数のデータしか得ることができない対象も多く、本書で紹介する古典的な機械学習の手法は、今後も随所で活躍するであろう。とりわけ、ベイズ的な考え方は、予測の損失最小を保証するという意味で重要である。多くの大学理工系の学部で、初年次あるいは2年次に学ぶ多変数の微積分や、固有値問題の基本をふくむ線形代数、それと確率と統計の基本事項は既知としているが、確率と統計や、対称行列に関する固有値問題などの数学的事項の要点は、第V部としてまとめた。

本書は多くの優れた書籍を参照して書かれ、とりわけ、C. M. ビショップ(著)、『パターン認識と機械学習』の影響は随所にみられる。数学的記法も同書に準拠した。また、構成は、K. P. Murphy, “Probabilistic Machine Learning: An Introduction”の影響をうけている。Murphyの本では深層学習を1つの部としているが、本書では深層学習の部はもうけず、ニューラルネットワークの基礎的事項をパラメトリックモデルの部へ、また、深層生成モデル(の1つであるVAE)を潜在モデルの部へおいた。ベイズ推論の重要性に鑑み、潜在モデルを第IV部としたことは本書の特徴の1つである。

各章には演習問題、巻末には解答例と丁寧な解説を掲載。

最近チェックした商品