内容説明
※この商品は固定レイアウトで作成されており、タブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字列のハイライトや検索、辞書の参照、引用などの機能が使用できません。
こちらの書籍は、2023/4/12発行の紙版 3刷に合わせて更新しました。
人気のAIフレームワーク「PyTorch」で、ディープラーニングプログラミングができるようになる本です。ディープラーニングのアルゴリズムが原理からわかります。
初心者でも他書に頼らず、本書1冊でマスターできます!
(本書掲載のコードは、2023年3月にリリースされたPyTorch 2.0でも、そのまま動作します)
本書は、次のような読者を想定しています。
1. 企業でディープラーニングプログラムを業務で利用している、あるいはこれから利用しようとしているITエンジニアや研究者
2. 理工系の大学・大学院の学生で研究の一環としてディープラーニングのプログラムを開発する必要がある方
3. まだPythonもKeras/TensorFlowも知らないが、ディープラーニングプログラミングをこれから勉強してみたいという方
本書は、新しい概念は一気には詰め込まず、できるだけ細分化して一歩一歩確実に進めます。
機械学習の基本から、「CNN」などを使った画像認識ディープラーニングモデルの開発・チューニングまでをじっくり学べます。
目次
序章 初めての画像認識
◆基礎編
1 章 ディープラーニングのためのPython のツボ
2 章 PyTorch の基本機能
3 章 初めての機械学習
4 章 予測関数の定義
◆機械学習 実践編
5 章 線形回帰
6 章 2 値分類
7 章 多値分類
8 章 MNIST を使った数字認識
◆画像認識 実践編
9 章 CNN による画像認識
10 章 チューニング技法
11 章 事前学習済みモデルの利用
12 章 カスタムデータの画像分類
講座 Python入門、NumPy入門、Matplotlib入門
感想・レビュー
※以下の感想・レビューは、株式会社ドワンゴの提供する「読書メーター」によるものです。
ぶう
JNTEST23
kk
ᚹγअәc0̸א




