Pythonで学ぶ統計的機械学習

個数:1
紙書籍版価格
¥3,080
  • 電子書籍
  • ポイントキャンペーン

Pythonで学ぶ統計的機械学習

  • 著者名:金森敬文【著】
  • 価格 ¥3,080(本体¥2,800)
  • オーム社(2018/11発売)
  • GWに本を読もう!Kinoppy 電子書籍・電子洋書 全点ポイント30倍キャンペーン(~5/6)
  • ポイント 840pt (実際に付与されるポイントはご注文内容確認画面でご確認下さい)
  • ISBN:9784274223051

ファイル: /

内容説明

Pythonで機械学習に必要な統計解析を学べる!!
機械学習を使いこなすには、確率・統計に根ざしたデータ解析の基礎理論の理解が不可欠です。そこで本書は、Pythonの簡単な使い方から確率・統計の基礎、統計モデルによる機械学習を解説します。

目次

まえがき
第1部 Pythonによる計算
第1章 Pythonの初歩
1.1 起動とパッケージの読み込み
1.2 Pythonによる演算
1.3 関数・制御構文
1.4 プロット
第2章 確率の計算
2.1 確率の考え方
2.2 標本空間と確率分布
2.3 連続な確率変数と確率密度関数・分布関数
2.4 期待値と分散
2.5 分位点
2.6 多次元確率変数
2.7 独立性
2.8 共分散・相関係数
2.9 条件付き確率・ベイズの公式
第2部 統計解析の基礎
第3章 機械学習の問題設定
3.1 教師あり学習
3.1.1 判別問題
3.1.2 回帰分析
3.2 教師なし学習
3.2.1 特徴抽出
3.2.2 分布推定
3.3 損失関数の最小化と学習アルゴリズム
第4章 統計的精度の評価
4.1 損失関数とトレーニング誤差・テスト誤差
4.2 テスト誤差の推定:交差検証法
4.3 ROC 曲線とAUC
4.3.1 定義
4.3.2 AUC とテスト誤差
第5章 データの整理と特徴抽出
5.1 主成分分析
5.2 因子分析
5.3 多次元尺度構成法
第6章 統計モデルによる学習
6.1 統計モデル
6.2 統計的推定
6.3 最尤推定
6.4 最尤推定量の計算法
6.4.1 例:一様分布のパラメータ推定
6.4.2 例:統計モデルのパラメータ推定
6.5 ベイズ推定
6.6 混合モデルとEM アルゴリズム
第7章 仮説検定
7.1 仮説検定の枠組み
7.2 ノンパラメトリック検定
7.3 分散分析
第3部 機械学習の方法
第8章 回帰分析の基礎
8.1 線形回帰モデル
8.2 最小2乗法
8.3 ロバスト回帰
8.4 リッジ回帰
8.5 カーネル回帰分析
第9章 クラスタリング
9.1 k 平均法
9.2 スペクトラルクラスタリング
9.2.1 グラフの切断とクラスタリング
9.2.2 アルゴリズム
9.3 局所性保存射影と多次元尺度構成法
9.4 混合正規分布によるクラスタリング
第10章 サポートベクトルマシン
10.1 判別問題
10.2 2 値判別のサポートベクトルマシン
10.2.1 線形分離可能なデータの学習
10.2.2 線形分離不可能なデータとソフトマージン
10.3 カーネルサポートベクトルマシン
10.4 モデルパラメータの選択
10.5 多値判別
第11章 スパース学習
11.1 L1 正則化とスパース性
11.2 エラスティックネット
11.3 スパースロジスティック回帰
11.4 条件付き独立性とスパース学習
11.5 辞書学習
第12章 決定木とアンサンブル学習
12.1 決定木
12.2 バギング
12.3 ランダムフォレスト
12.4 ブースティング
12.4.1 アルゴリズム
12.4.2 アルゴリズムの導出
12.4.3 ブースティングによる確率推定
第13章 ガウス過程モデル
13.1 ベイズ推定とガウス過程モデル
13.2 ガウス過程モデルによる回帰分析
13.3 ガウス過程モデルによる判別分析
13.3.1 事後分布の近似
13.3.2 予測分布の近似
13.4 ベイズ最適化
13.4.1 ベイズ最適化とガウス過程モデル
13.4.2 ベイズ最適化によるモデル選択
第14章 密度比推定
14.1 密度比とその応用
14.2 密度比の推定
14.3 密度比推定のための交差検証法
14.4 共変量シフトのもとでの回帰分析
14.5 2 標本検定
付録:ベンチマークデータ
参考文献
Python索引
用語索引

感想・レビュー

※以下の感想・レビューは、株式会社ブックウォーカーの提供する「読書メーター」によるものです。

かずたん

0
モデルを実装する際、必要最低限の理論について触れてあるため学びやすいです。すでに理論について知識ありPythonで実装したい人には向いていると思います。また、全体的に文章が読みやすいです。 2020/09/14

yoshi1987

0
理論の説明がしっかりしている2020/05/27

tamioar

0
中級者向け。2019/11/22

外部のウェブサイトに移動します

よろしければ下記URLをクリックしてください。

https://bookmeter.com/books/13254367
  • ご注意事項

最近チェックした商品