The Practical Guide to Large Language Models : Hands-On AI Applications with Hugging Face Transformers

個数:

The Practical Guide to Large Language Models : Hands-On AI Applications with Hugging Face Transformers

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 360 p.
  • 言語 ENG
  • 商品コード 9798868822155
  • DDC分類 006.35

Full Description

This book is a practical guide to harnessing Hugging Face's powerful transformers library, unlocking access to the largest open-source LLMs. By simplifying complex NLP concepts and emphasizing practical application, it empowers data scientists, machine learning engineers, and NLP practitioners to build robust solutions without delving into theoretical complexities.

The book is structured into three parts to facilitate a step-by-step learning journey. Part One covers building production-ready LLM solutions introduces the Hugging Face library and equips readers to solve most of the common NLP challenges without requiring deep knowledge of transformer internals. Part Two focuses on empowering LLMs with RAG and intelligent agents exploring Retrieval-Augmented Generation (RAG) models, demonstrating how to enhance answer quality and develop intelligent agents. Part Three covers LLM advances focusing on expert topics such as model training, principles of transformer architecture and other cutting-edge techniques related to the practical application of language models.

Each chapter includes practical examples, code snippets, and hands-on projects to ensure applicability to real-world scenarios. This book bridges the gap between theory and practice, providing professionals with the tools and insights to develop practical and efficient LLM solutions.

 

What you will learn:

What are the different types of tasks modern LLMs can solve
How to select the most suitable pre-trained LLM for specific tasks
How to enrich LLM with a custom knowledge base and build intelligent systems
What are the core principles of Language Models, and how to tune them
How to build robust LLM-based AI Applications

Who this book is for:

Data scientists, machine learning engineers, and NLP specialists with basic Python skills, introductory PyTorch knowledge, and a primary understanding of deep learning concepts, ready to start applying Large Language Models in practice.

Contents

Part I: LLM Basics.- Chapter 1. Discovering Transformers.- Chapter 2. LLM Basics: Internals, Deployment and Evaluation.- Chapter 3. Improving Chat Model Responses.- Part II: Empowering LLMs Applications with RAG and Intelligent Agents.- Chapter 4. Enriching the Model's Knowledge with Retrieval Augmented Generation.- Chapter 5. Building Agent Systems.- Part III: LLM Advances.- Chapter 6. Mastering Model Training.- Chapter 7. Unpacking the Transformers Architecture.

最近チェックした商品