Practical RHEL AI : Designing, Deploying and Scaling AI Solutions with Red Hat Enterprise Linux

個数:

Practical RHEL AI : Designing, Deploying and Scaling AI Solutions with Red Hat Enterprise Linux

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 259 p.
  • 言語 ENG
  • 商品コード 9798868819001
  • DDC分類 005.432

Description

If you're looking to build, deploy, and scale AI solutions with confidence, Practical RHEL AI is the guide you need. Whether you're an AI developer, data scientist, or DevOps engineer, this book walks you through the entire process from setting up your AI development environment to optimizing and securing enterprise-scale AI workloads on Red Hat Enterprise Linux.

You'll start with the essentials: installation, configuration, and leveraging powerful machine learning frameworks like TensorFlow, PyTorch, and Scikit-learn. Then, you ll dive into the tools that make AI deployment seamless GPU acceleration, containerization, and cloud integration with AWS and Azure.

Security and compliance are non-negotiable in AI, and this book makes sure you get them right. Learn how to protect your models with encryption, implement role-based access control (RBAC), and meet industry standards like GDPR and HIPAA. You ll also master AI workload monitoring with Prometheus and Grafana, troubleshoot common issues, and automate deployments with Ansible. However, theory only gets you so far real-world applications make the difference. Through hands-on examples and case studies in healthcare, finance, and manufacturing, you ll see how RHEL AI powers innovation in the field. Plus, you'll get insights into the future of AI, including Explainable AI (XAI), Edge AI, and AI governance. With Practical RHEL AI, you re not just learning AI you re building AI solutions that scale.

You Will:

  • Learn to Install and Configure RHEL AI to optimize machine learning workloads

Chapter 1: Introduction to RHEL AI.- Chapter 2: Setting Up RHEL AI.- Chapter 3: Exploring Core Components.- Chapter 4: Advanced Features of RHEL AI.- Chapter 5: Developing Custom AI Applications.- Chapter 6: Monitoring and Maintenance.- Chapter 7: Use Cases and Best Practices.- Chapter 8: Future Trends in RHEL AI.- Chapter 9: Community and Support.

Luca Berton is a seasoned AI Automation and DevOps expert with more than 18 years of experience in IT, specializing in cloud infrastructure, machine learning platforms, and enterprise-scale automation. He has led major AI and automation initiatives for financial institutions such as JPMorgan Chase, Société Générale, ABN Ambro and BPCE, designing GPU-accelerated Kubernetes/OpenShift AI clusters and optimizing CI/CD pipelines for regulated environments.

Luca is the creator of the popular Ansible Pilot project and author of several best-selling technical books, including Ansible for Kubernetes by Example and Hands-On Ansible Automation. A former Red Hat engineer, he has made significant contributions to the open source ecosystem, particularly in enhancing Ansible's capabilities for cloud and AI workloads.

Widely recognized for his teaching and community leadership, Luca regularly shares his expertise through courses on Coursera, Pluralsight, and Educative, and speaks at global tech conferences on topics ranging from MLOps to infrastructure automation.


最近チェックした商品