Mastering Snowflake DataOps with DataOps.live : An End-to-End Guide to Modern Data Management

個数:

Mastering Snowflake DataOps with DataOps.live : An End-to-End Guide to Modern Data Management

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 340 p.
  • 言語 ENG
  • 商品コード 9798868817533
  • DDC分類 005.7

Full Description

Welcome to your definitive guide to implementing DataOps strategies on the Snowflake platform. This comprehensive, four-part book not only introduces you to the foundations of DataOps, but also bridges the gap between theory and practice, and offers hands-on guidance using DataOps.Live, which is the only platform that enables seamless DataOps integration with Snowflake. Armed with this book, sophisticated data processes will become more accessible and you'll learn to take complete control of your data pipelines to deliver more efficient, automated solutions.

Part 1 of the book lays the groundwork by exploring the pillars of DataOps, its key terminology, and architecture, while showing how it differs from traditional DevOps. You'll dive deep into the essential concepts and understand why DataOps is crucial for modern data management. Moving into Part 2, you'll explore the tools and coding languages integral to DataOps environments, giving you the technical foundation to get started.

In Part 3, you'll be guided through the architecture, setup, and core concepts of the DataOps.Live platform. You'll learn how to implement your own DataOps strategy within Snowflake, using step-by-step walkthroughs and real-world examples to simplify even the most complex challenges. Finally, Part 4 delves into advanced techniques for maximizing the power of DataOps.Live, ensuring that you're prepared to scale and refine your DataOps processes.

With practical code examples, starter projects, and detailed walkthroughs, ths book offers everything you need to deploy a successful DataOps strategy. Whether you're a data engineer, architect, or manager, this book provides the essential knowledge needed to streamline data operations, integrate DataOps into your Snowflake infrastructure, and stay ahead of the curve in the rapidly evolving world of data management.

What You Will Learn

Explore the fundamentals of DataOps, its differences from DevOps, and its significance in modern data management
Understand the basics of GIT, its role in DataOps, and how to effectively use it
Know why DBT is preferred for DataOps, along with its essential concepts and usage
Discover the importance of DataOps.Live for Snowflake, including setup and platform utilization
Delve into advanced topics of DataOps.Live to enhance and evolve your DataOps strategy

Who This Book Is For

Snowflake users and managers looking to rapidly implement a DataOps strategy

Contents

1. DataOps.- 2. Pillars of True DataOps.- 3. MLOps.- 4. DataOps Best Practices.- 5. Understanding Snowflake.- 6. Introduction to Git.- 7. Getting Started with Git.- 8. Advanced Git Topics.- 9. Introduction to DBT.- 10. Advanced DBT Techniques and Best Practices.- 11. Introduction to DataOps.Live Platform.- 12. DataOps.Live & DataOps: Better Together.- 13: Essential Elements of DataOps.Live.- 14. Getting Started with DataOps.Live.- 15. Managing Your Environments.- 16. Build Your First DataOps Pipeline.- 17. Getting Started with SOLE.- 18. Getting Started with MATE.- 19. Managing Multiple Databases with DataOps.Live.- 20. DataOps.Live Orchestrators.- 21. Build Only Changed Models.- 22. DataOps.Live REST API.- 23. Medallion Architecture.- 24. Kimball Architecture.- 25. DataVault 2.0 Architecture.- 26. Combining Medallion with DataVault 2.0 and Kimball.- 27. Entity-Relationship (ER) Modeling and Beyond.- 28. Event-Driven Data Models.- 29. Graph Data Modeling.

最近チェックした商品