Tiny Machine Learning Quickstart : Machine Learning for Arduino Microcontrollers (Maker Innovations Series)

個数:

Tiny Machine Learning Quickstart : Machine Learning for Arduino Microcontrollers (Maker Innovations Series)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 326 p.
  • 言語 ENG
  • 商品コード 9798868812934
  • DDC分類 006.22

Full Description

Be a part of the Tiny Machine Learning (TinyML) revolution in the ever-growing world of IoT. This book examines the concepts, workflows, and tools needed to make your projects smarter, all within the Arduino platform.

You'll start by exploring Machine learning in the context of embedded, resource-constrained devices as opposed to your powerful, gigabyte-RAM computer. You'll review the unique challenges it poses, but also the limitless possibilities it opens. Next, you'll work through nine projects that encompass different data types (tabular, time series, audio and images) and tasks (classification and regression). Each project comes with tips and tricks to collect, load, plot and analyse each type of data.

Throughout the book, you'll apply three different approaches to TinyML: traditional algorithms (Decision Tree, Logistic Regression, SVM), Edge Impulse (a no-code online tools), and TensorFlow for Microcontrollers. Each has its strengths and weaknesses, and you will learn how to choose the most appropriate for your use case. TinyML Quickstart will provide a solid reference for all your future projects with minimal cost and effort.

What You Will Learn

Navigate embedded ML challenges
Integrate Python with Arduino for seamless data processing
Implement ML algorithms
Harness the power of Tensorflow for artificial neural networks
Leverage no-code tools like Edge Impulse
Execute real-world projects

Who This Book Is For

Electronics hobbyists and developers with a basic understanding of Tensorflow, ML in Python, and Arduino-based programming looking to apply that knowledge with microcontrollers. Previous experience with C++ is helpful but not required.

Contents

Chapter 1: Introduction to Tiny Machine Learning.- Chapter 2: Tabular data classification.- Chapter 3: Tabular data regression.-  Chapter 4: Time series classification with Edge Impulse.- Chapter 5: Time series classification without Edge Impulse.- Chapter 6: Audio Wake Word detection with Edge Impulse.- Chapter 7: Object detection with Edge Impulse.- Chapter 8: TensorFlow for Microcontrollers from scratch.

最近チェックした商品