責任あるAI:実践<br>Responsible AI in Practice : A Practical Guide to Safe and Human AI (First Edition. 2025. xii, 212 S. XII, 212 p. 27 illus., 18 illus. in c)

個数:

責任あるAI:実践
Responsible AI in Practice : A Practical Guide to Safe and Human AI (First Edition. 2025. xii, 212 S. XII, 212 p. 27 illus., 18 illus. in c)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 300 p.
  • 言語 ENG
  • 商品コード 9798868811654

Full Description

This book is the first practical book on AI risk assessment and management. It will enable you to evaluate and implement safe and accurate AI models and applications. The book features risk assessment frameworks, statistical metrics and code, a risk taxonomy curated from real-world case studies, and insights into AI regulation and policy, and is an essential tool for AI governance teams, AI auditors, AI ethicists, machine learning (ML) practitioners, Responsible AI practitioners, and computer science and data science students building safe and trustworthy AI systems across businesses, organizations, and universities.

 

The centerpiece of this book is a risk management and assessment framework titled "Safe Human-centered AI (SAFE-HAI)," which highlights AI risks across the following Responsible AI principles: accuracy, sustainability and robustness, explainability, transparency and accountability, fairness, privacy and human rights, human-centered AI, and AI governance. Using several statistical metrics such as Area Under Curve (AUC), Rank Graduation Accuracy, and Shapley values, you will learn to apply Lorenz curves to measure risk and inequality across the different principles and will be equipped with a taxonomy/scoring rubric to identify and mitigate identified risks. 

 

This book is a true practical guide and covers a real-world case study using the proposed SAFE-HAI framework. The book will help you adopt standards and voluntary codes of conduct in compliance with AI risk and safety policies and regulations, including those from the NIST (National Institute of Standards and Technology) and EU AI Act (European Commission).

 

What You Will Learn

Know the key principles behind Responsible AI and associated risks
Become familiar with risk assessment frameworks, statistical metrics, and mitigation measures for identified risks
Be aware of the fundamentals of AI regulations and policies and how to adopt them
Understand AI governance basics and implementation guidelines

 

Who This Book Is For

AI governance teams, AI auditors, AI ethicists, machine learning (ML) practitioners, Responsible AI practitioners, and computer science and data science students building safe and trustworthy AI systems across businesses, organizations, and universities

Contents

Part I: Introduction.- Chapter 1: Responsible AI and AI Governance.- Part II: Technical risks (Internal to an organisation).- Chapter 2. Accuracy.- Chapter 3. Robustness and Security.- Chapter 4: Explainability.- Part III: Ethical risks (External).- Chapter 5. Fairness and Human Rights.- Chapter 6: Privacy.- Chapter 7: Sustainability.- Chapter 8: Human-Centered AI.- Part IV: Governance and Case studies.- Chapter 9: Governance Processes.- Chapters 10: Case Study.

最近チェックした商品