Microbial Data Intelligence and Computational Techniques for Sustainable Computing (Microorganisms for Sustainability)

個数:

Microbial Data Intelligence and Computational Techniques for Sustainable Computing (Microorganisms for Sustainability)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 391 p.
  • 言語 ENG
  • 商品コード 9789819996230

Full Description

This book offers information on intelligent and computational techniques for microbial data associated with plant microbes, human microbes etc. The main focus of this book is to provide an insight on building smart sustainable solutions for microbial technology using intelligent computational techniques.

Microbes are ubiquitous in nature, and their interactions among each other are important for colonizing diverse habitats. The core idea of sustainable computing is to deploy algorithms, models, policies and protocols to improve energy efficiency and management of resources, enhancing ecological balance, biological sustenance and other services on societal contexts. Chapters in this book explore the conventional methods as well as the most recently recognized high-throughput technologies which are important for productive agroecosystems to feed the growing global population. This book is of interest to teachers, researchers, microbiologist, computer bioinformatics scientists,plant and environmental scientist, and those interested in environment stewardship around the world. The book also serves as an advanced textbook material for undergraduate and graduate students of computer science, biomedicine, agriculture, human science, forestry, ecology, soil science, and environmental sciences and policy makers.

Contents

1. The Contribution of Artificial Intelligence to Drug Discovery: Current Progress and Prospects for the Future.- 2. Prediction of Plant disease using Artificial Intelligence.- 3. Computer Vision Based Remote Care of Microbiological Data Analysis.- 4. A Comparative Study of Various Machine Learning (ML) Approaches for Fake News Detection in Web based Applications.- 5. Analytics and Decision-Making Model Using ML For IoT Based Greenhouse Precision Management in Agriculture.- 6. Distil-BERT based Text Classification for Automated Diagnosis of Mental Health Conditions.- 7. An optimized hybrid ARIMA-LSTM model for time series forecasting of Agriculture production in INDIA.- 8. An Exploratory Analysis of Machine Intelligence Enabled Plant Diseases Assessment.- 9. Synergizing Smart Farming and Human Bioinformatics through IoT and Sensor Devices.- 10. Deep learning assisted techniques for detection & prediction of colorectal cancer from medical images and microbial modality.- 11. IoT Enabled Smart farming and human bioinformatics.- 12. Smart farming and human bioinformatics system based on Context aware computing systems.- 13. Plant Diseases Diagnosis with Artificial Intelligence (AI).- 14. Analyzing the Frontier of AI-Based Plant Disease Detection: Insights and Perspectives.- 15. Fuzzy and Data Mining Methods for Enhancing Plant Productivity and Sustainability.- 16. Plant Disease Diagnosis with Artificial Intelligence (AI).- 17. Sustainable AI driven Applications for Plant Care and Treatment.- 18. Use Cases and Future Aspects of Intelligent Techniques in Microbe Data Analysis.- 19. Early Crop Disease Identification Using Multi-Fork Tree Networks and Microbial Data Intelligence.- 20. Guarding Maize: Vigilance Against Pathogens Early Identification, Detection and Prevention.- 21. Comprehensive Analysis of Deep Learning Models for Plant Disease Prediction.- 22. Enhancing Single-Cell Trajectory Inference and Microbial Data Intelligence.- 23. AI assisted methods for protein structure prediction and analysis.

最近チェックした商品