機械学習コンテスト:ガイドブック<br>Machine Learning Contests: a Guidebook

個数:

機械学習コンテスト:ガイドブック
Machine Learning Contests: a Guidebook

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 言語 ENG
  • 商品コード 9789819937226

Full Description

This book systematically introduces the competitions in the field of algorithm and machine learning. The first author of the book has won 5 championships and 5 runner-ups in domestic and international algorithm competitions.Firstly, it takes common competition scenarios as a guide by giving the main processes of using machine learning to solve real-world problems, namely problem modelling, data exploration, feature engineering, model training. And then lists the main points of difficulties, general ideas with solutions in the whole process. Moreover, this book comprehensively covers several common problems in the field of machine learning competitions such as recommendation, temporal prediction, advertising, text computing, etc.

The authors, also knew as "competition professionals", will explain the actual cases in detail and teach you various processes, routines, techniques and strategies, which is a rare treasure book for all competition enthusiasts. It is very suitable for readers who are interested in algorithm competitions and deep learning algorithms in practice, or computer-related majors.

Contents

Chapter 1 First Sight.- Chapter 2 Problem Modeling.- Chapter 3 Data Exploration.- Chapter 4 Characteristic Engineering.- Chapter 5 Model Training .- Chapter 6 Model Fusion.- Chapter 7 User Portrait.- Chapter 8 Actual Combat Case: Elo Merchant.- Chapter 9 time sequence.- Chapter 10 Practical Cases: Global Urban.- Chapter 11 Practical Case: Corporaci .-Corporación Favorita Grocery Sales Forecasting.- Chapter 12 Computing Advertising.- Chapter 13 Practical Cases: Tencent 2018 Advertising Algorithm Contest-Similarity Crowd Expansion.- Chapter 14: TalkingData AdTracking Fraud Detection Challenge.- Chapter 15 Natural Language Processing.- Chapter 16 Practical Case: Quora Question Pairs.

最近チェックした商品