小森靖・松本耕二・津村博文(共)著/ルート系のゼータ関数論<br>The Theory of Zeta-Functions of Root Systems (Springer Monographs in Mathematics)

個数:

小森靖・松本耕二・津村博文(共)著/ルート系のゼータ関数論
The Theory of Zeta-Functions of Root Systems (Springer Monographs in Mathematics)

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 416 p.
  • 言語 ENG
  • 商品コード 9789819909094

Full Description

The contents of this book was created by the authors as a simultaneous generalization of Witten zeta-functions, Mordell-Tornheim multiple zeta-functions, and Euler-Zagier multiple zeta-functions. Zeta-functions of root systems are defined by certain multiple series, given in terms of root systems. Therefore, they intrinsically have the action of associated Weyl groups. 
The exposition begins with a brief introduction to the theory of Lie algebras and root systems and then provides the definition of zeta-functions of root systems, explicit examples associated with various simple Lie algebras, meromorphic continuation and recursive analytic structure described by Dynkin diagrams, special values at integer points, functional relations, and the background given by the action of Weyl groups. In particular, an explicit form of Witten's volume formula is provided. It is shown that various relations among special values of Euler-Zagier multiple zeta-functions—which usually are called multiple zeta values (MZVs) and are quite important in connection with Zagier's conjecture—are just special cases of various functional relations among zeta-functions of root systems. The authors further provide other applications to the theory of MZVs and also introduce generalizations with Dirichlet characters, and with certain congruence conditions. The book concludes with a brief description of other relevant topics.

Contents

​Introduction.- Fundamentals of the theory of Lie algebras and root systems.- Definitions and examples.- Values at positive even integer points.- Convex polytopes and the rationality.- The recursive structure.- The meromorphic continuation.- Functional relations (I).- Functional relations (II).- Poincar'e polynomials and values at integer points .- The case of the exceptional algebra G2.- Applications to multiple zeta values (I).- Applications to multiple zeta values (II).- L-functions.-  Zeta-functions of Lie groups.- Lattice sums of hyperplane arrangements.- Miscellaneous results.

最近チェックした商品