Artificial Intelligence Enabled Computational Methods for Smart Grid Forecast and Dispatch (Engineering Applications of Computational Methods)

個数:

Artificial Intelligence Enabled Computational Methods for Smart Grid Forecast and Dispatch (Engineering Applications of Computational Methods)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 260 p.
  • 言語 ENG
  • 商品コード 9789819908011
  • DDC分類 621.31

Full Description

With the increasing penetration of renewable energy and distributed energy resources, smart grid is facing great challenges, which could be divided into two categories. On the one hand, the endogenous uncertainties of renewable energy and electricity load lead to great difficulties in smart grid forecast. On the other hand, massive electric devices as well as their complex constraint relationships bring about significant difficulties in smart grid dispatch. 

Owe to the rapid development of artificial intelligence in recent years, several artificial intelligence enabled computational methods have been successfully applied in the smart grid and achieved good performances. Therefore, this book is concerned with the research on the key issues of artificial intelligence enabled computational methods for smart grid forecast and dispatch, which consist of three main parts.

 

(1) Introduction for smart grid forecast and dispatch, in inclusion of reviewing previous contribution of various research methods as well as their drawbacks to analyze characteristics of smart grid forecast and dispatch.

(2) Artificial intelligence enabled computational methods for smart grid forecast problems, which are devoted to present the recent approaches of deep learning and machine learning as well as their successful applications in smart grid forecast.

(3) Artificial intelligence enabled computational methods for smart grid dispatch problems, consisting of edge-cutting intelligent decision-making approaches, which help determine the optimal solution of smart grid dispatch.             



The book is useful for university researchers, engineers, and graduate students in electrical engineering and computer science who wish to learn the core principles, methods, algorithms, and applications of artificial intelligence enabled computational methods.

Contents

Chapter 1: Introduction for Smart Grid Forecast and Dispatch.- Chapter 2: Review for Smart Grid Forecast.- Chapter 3: Review for Smart Grid Dispatch.- Chapter 4: Deep Learning Based Densely Connected Network for Load Forecast.- Chapter 5: Reinforcement Learning Assisted Deep Learning for Probabilistic Charging Power Forecast of Electric Vehicles.- Chapter 6: Dense Skip Attention based Deep Learning for Day-Ahead Electricity Price Forecast with a Drop-Connected Structure.- Chapter 7: Dirichlet Process Mixture Model Based on Relevant Data for Uncertainty Characterization of Net Load.- Chapter 8: Extreme Learning Machine for Economic Dispatch with High Penetration of Wind Power.- Chapter 9: Data-driven Bayesian Assisted Optimization Algorithm for Dispatch of Highly Renewable Energy Power Systems.- Chapter 10: Multi-objective Optimization Approach for Coordinated Scheduling of Electric Vehicles-Wind Integrated Power Systems.- Chapter 11: Deep Reinforcement Learning Assisted OptimizationAlgorithm for Many-Objective Distribution Network Reconfiguration.- Chapter 12: Federated Multi-Agent Deep Reinforcement Learning Approach via Physic-Informed Reward for Multi-Microgrid Energy Management.- Chapter 13: Supply Function Game Based Energy Management Between Electric Vehicle Charging Stations and Electricity Distribution System.