Chains of Circles - Pappus and Steiner Chains: Classical Insights and Modern Extensions

個数:
  • ポイントキャンペーン

Chains of Circles - Pappus and Steiner Chains: Classical Insights and Modern Extensions

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 216 p.
  • 言語 ENG
  • 商品コード 9789819820153
  • DDC分類 516.2

Full Description

In this book, we present the topic of chains of circles — a subject within Plane Euclidean Geometry — in a complete and unified manner. These chains are generally classified into two main groups: (1) Pappus chains and (2) Steiner chains. While many results on these chains have been published since ancient times, including some with practical applications, they remain scattered across the literature. To date, no comprehensive and cohesive exposition has been compiled in a single volume.This book aims to fill that gap by providing a thorough treatment of the topic, along with new research that leads to several important findings. Among these are an extension of the famous Archimedes formula to general chains, newly discovered properties of the chains, and their intriguing connections with conic sections — which serve as geometric loci of points related to the chains.To benefit fully from the material, the reader should be familiar with the fundamentals of Euclidean plane geometry, similarity and inversion theory, conics, radical axes of circles, and related concepts. For convenience, Chapter 4 includes a summary of key facts that readers may reference while studying this material. Where details have been omitted or computations shortened, we provide sufficient hints, instructions, and references for the interested reader to reconstruct the full arguments. In addition, we pose a few new questions for readers who may wish to explore and publish further work on the subject.Beyond inversion, the topics explored here include Descartes's Theorem for four mutually tangent circles (not meeting at a single point) and the classical Stewart's Theorem in triangle geometry. We also take the opportunity to correct an error that has persisted in the classical bibliography.

最近チェックした商品