Natural Language Processing and Chinese Computing : 13th National CCF Conference, NLPCC 2024, Hangzhou, China, November 1-3, 2024, Proceedings, Part I (Lecture Notes in Computer Science) (2024)

個数:
  • ポイントキャンペーン

Natural Language Processing and Chinese Computing : 13th National CCF Conference, NLPCC 2024, Hangzhou, China, November 1-3, 2024, Proceedings, Part I (Lecture Notes in Computer Science) (2024)

  • ウェブストア価格 ¥18,498(本体¥16,817)
  • Springer Nature(2024/11発売)
  • 外貨定価 US$ 89.99
  • 【ウェブストア限定】サマー!ポイント5倍キャンペーン 対象商品(~7/21)※店舗受取は対象外
  • ポイント 840pt
  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 519 p.
  • 言語 ENG
  • 商品コード 9789819794300
  • DDC分類 006.35

Full Description

The five-volume set LNCS 15359 - 15363 constitutes the refereed proceedings of the 13th National CCF Conference on Natural Language Processing and Chinese Computing, NLPCC 2024, held in Hangzhou, China, during November 2024.

The 161 full papers and 33 evaluation workshop papers included in these proceedings were carefully reviewed and selected from 451 submissions. They deal with the following areas: Fundamentals of NLP; Information Extraction and Knowledge Graph; Information Retrieval, Dialogue Systems, and Question Answering; Large Language Models and Agents; Machine Learning for NLP; Machine Translation and Multilinguality; Multi-modality and Explainability; NLP Applications and Text Mining; Sentiment Analysis, Argumentation Mining, and Social Media; Summarization and Generation. 

Contents

Overcoming Rigid and Monotonous: Enhancing Knowledge-grounded Conversation Generation via Multi-granularity Knowledge.- Learning to Generate Style-Specific Adapters for Stylized Dialogue Generation.- Hierarchical Knowledge Aggregation for Personalized Response Generation in Dialogue Systems.- Multi-hop Reading Comprehension Model Based on Abstract Meaning Representation and Multi-task Joint Learning.- Leveraging Large Language Models for QA Dialogue Dataset Construction and Analysis in Public Services.- MCFC: A Momentum-Driven Clicked Feature Compressed Pre-trained Language Model for Information Retrieval.- Integrating Syntax Tree and Graph Neural Network for Conversational Question Answering over Heterogeneous Sources.- PqE: Zero-Shot Document Expansion for Dense Retrieval with Large Language Models.- CKF: Conditional Knowledge Fusion Method for CommonSense Question Answering.- MPPQA: Structure-Aware Extractive Multi-Span Question Answering for Procedural Documents.- GraphLLM: A General Framework for Multi-hop Question Answering over Knowledge Graphs using Large Language Models.- Local or Global Optimization for Dialogue Discourse Parsing.- Structure and Behavior Dual-Graph Reasoning with Integrated Key-Clue Parsing for Multi-Party Dialogue Reading Comprehension.- Enhancing Emotional Support Conversation with Cognitive Chain-of-Thought Reasoning.- A Simple and Effective Span Interaction Modeling Method for Enhancing Multiple Span Question Answering.- FacGPT:An Effective and Efficient method for Evaluating Knowledge-based Visual Question Answering.- PAPER: A Persona-Aware Chain-of-Thought Learning Framework for Personalized Dialogue Response Generation.- Towards Building a Robust Knowledge Intensive Question Answering Model with Large Language Models.- Model-Agnostic Knowledge Distillation between Heterogeneous Models.- Exploring Multimodal Information Fusion in Spoken Off-Topic Degree Assessment.- Integrating Hierarchical Key Information and Semantic Difference Features for Long Text Matching.- CausalAPM: Generalizable Literal Disentanglement for NLU Debiasing.- W2CL:A Multi-task Learning Approach to Improve Domain-Specific Sentence Classification through Word Classification and Contrastive Learning.- Outperforming Larger Models on Text Classification Through Continued Pre-Training.- Semantic Knowledge Enhanced and Global Pointer Optimized Method for Medical Nested Entity Recognition.- CSLAN: A Novel Lexicon Attention Network for Chinese NERS2D: Enhancing Zero-shot Cross-lingual Event Argument Extraction with Semantic Knowledge.- Bias-Rectified Multi-way Learning with Data Augmentation for Implicit Discourse Relation Recognition.- Retrieval-enhanced Template Generation for Template Extraction.- Chinese Named Entity Recognition Based on Template and Contrastive Learning.- Enhancing Logical Rules Based on Self-Distillation for Document-Level Relation ExtractionPrompt-based Joint Contrastive Learning for Zero-Shot Relation ExtractionLow-Resource Event Causality Identification With Global Consistency Constraints.- Only One Relation Possible? Modeling the Ambiguity in Temporal Relation Extraction.- Empowering LLMs for Long-text Information Extraction in Chinese Legal Documents.- LLMADR: A Novel Method for Adverse Drug  Reaction Extraction Based on Style Aligned  Large Language Models Fine-tuning.- Research on Named Entity Recognition in Ancient Chinese Based on Incremental Pre-training and Domain Lexicon.- MCKRL: A Multi-Channel based Multi-Graph Knowledge Representation Learning Model.

最近チェックした商品