解析と確率のための測度論(テキスト)<br>Measure Theory for Analysis and Probability (Indian Statistical Institute Series) (2025)

個数:

解析と確率のための測度論(テキスト)
Measure Theory for Analysis and Probability (Indian Statistical Institute Series) (2025)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 375 p.
  • 言語 ENG
  • 商品コード 9789819779284

Full Description

This book covers major measure theory topics with a fairly extensive study of their applications to probability and analysis. It begins by demonstrating the essential nature of measure theory before delving into the construction of measures and the development of integration theory. Special attention is given to probability spaces and random variables/vectors. The text then explores product spaces, Radon-Nikodym and Jordan-Hahn theorems, providing a detailed account of 퐿푝 spaces and their duals. After revisiting probability theory, it discusses standard limit theorems such as the laws of large numbers and the central limit theorem, with detailed treatment of weak convergence and the role of characteristic functions.

The book further explores conditional probabilities and expectations, preceded by motivating discussions. It discusses the construction of probability measures on infinite product spaces, presenting Tulcea's theorem and Kolmogorov's consistency theorem. The text concludes with the construction of Brownian motion, examining its path properties and the significant strong Markov property. This comprehensive guide is invaluable not only for those pursuing probability theory seriously but also for those seeking a robust foundation in measure theory to advance in modern analysis. By effectively motivating readers, it underscores the critical role of measure theory in grasping fundamental probability concepts.

Contents

1. Measure Theory: Why and What.- 2. Measures: Construction and Properties.- 3. Measurable Functions and Integration.- 4. Random Variables and Random Vectors.- 5. Product Spaces.- 6. Radon-Nikodym Theorem and Lp Spaces.- 7. Convergence and Laws of Large Numbers.- 8. Weak convergence and Central Limit Theorem.- 9. Conditioning: The Right Approach.- 10. Infinite Products.- 11. Brownian Motion: A Brief Journey.

最近チェックした商品