Harnessing Data Science for Sustainable Agriculture and Natural Resource Management (Studies in Big Data) (2024)

個数:

Harnessing Data Science for Sustainable Agriculture and Natural Resource Management (Studies in Big Data) (2024)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 348 p.
  • 言語 ENG
  • 商品コード 9789819777617

Full Description

This book is a comprehensive resource that handles the issues of sustainable agriculture and natural resource management, aligned with the United Nations' Sustainable Development Goals (SDGs). The book is organized into five sections, Understanding the Problem, Data Collection and Cleaning, Exploratory Data Analysis and Visualization, Model Building, and Model Deployment. Each section covers a critical aspect of data science in this context and addresses specific SDGs 2—zero hunger, 6—clean water and sanitation, 12—responsible consumption and production, 13—climate action, and 15—Life on land. The organized sections are arranged to seamlessly follow the data science pipeline and provide practical guidance from problem understanding to its model deployment and stakeholder management. The book is useful for researchers, students, practitioners, and policymakers.

Contents

Introduction to Data Science in Agriculture and Natural Resource Management.- Defining Problems and Identifying Opportunities in Agriculture and Natural Resources.- Preprocessing of Agricultural and Natural Resource Data.- A Robust big data handling solution for RGB image data set by indoor UAV based phenotyping system.- Mapping Aboveground Biomass and Soil Organic Carbon Density in India- A geospatial-analytic framework for Integrating multi-year remote sensing, large field surveys, and machine learning.- Statistical Modeling in Agriculture: From Foundational Concepts to Modern Applications.- EasyIDP v2.0: An Intermediate Data Processing Package for Photogrammetry-Based Plant Phenotyping.- Deep Learning: A Catalyst for Sustainable Agriculture Transformation.- Deep Learning and Reinforcement Learning Methods for Advancing Sustainable Agricultural and Natural Resource Management.- A Review on AI and Remote Sensing-Based Regenerative Agriculture Assessment.- Model Evaluation and Selection: Ensuring Robust and Accurate Predictions of Crop Yields in Agriculture.- Evaluation of hybrid biodegradable sensor node for monitoring soil moisture.- Multi-modal AI for Ultra-precision Agriculture.- Future Perspectives: Emerging Technologies and Ethical Considerations in Data Science for Agriculture and Natural Resources.

最近チェックした商品