Analytical Decision Making and Data Envelopment Analysis : Advances and Challenges (Infosys Science Foundation Series) (2025)

個数:

Analytical Decision Making and Data Envelopment Analysis : Advances and Challenges (Infosys Science Foundation Series) (2025)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 482 p.
  • 言語 ENG
  • 商品コード 9789819769711

Full Description

This book explores the intersection of data envelopment analysis (DEA) and various analytical decision-making methodologies. Featuring contributions from experts in the field from across the world, each chapter delves into different aspects of DEA and its applications in real-world scenarios. The book covers a wide range of topics, including integrating DEA with machine learning techniques, performance evaluation in diverse sectors like banking and civil engineering, and using DEA in managerial decision-making. It also examines data mining during the Covid-19 pandemic and the application of blockchain and IoT in supply chain management. The book offers a deep dive into the evolution of nonparametric frontier methods and the development of new optimization algorithms, addressing the complexities of modern analytical decision-making tools.

A few chapters delve into futuristic topics like fuzzy sets and their extensions in decision-making and exploring e-learning platforms for education. This book is an invaluable resource for researchers, practitioners and students interested in the latest DEA advancements and practical applications in various fields. Its multidisciplinary approach makes it a useful addition to the libraries of those seeking to understand the complexities and potentials of modern analytical decision-making tools.

Contents

Chapter 1 Merging Data Envelopment Analysis and Atructural Risk Minimization: Some Examples of Use of Multi-Output Machine Learning Techniques on Real-World Data.- Chapter 2 A New Network Data Envelopment Analysis Model for Efficacy Evaluation of Decision-Making Units.- Chapter 3 Possibilistic Network DEA Approach for Performance Evaluation of Two-Stage Decision-Making Units under Uncertainty.

最近チェックした商品