感情分析とその教育データにおける応用<br>Sentiment Analysis and its Application in Educational Data Mining (Springerbriefs in Applied Sciences and Technology)

個数:

感情分析とその教育データにおける応用
Sentiment Analysis and its Application in Educational Data Mining (Springerbriefs in Applied Sciences and Technology)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 97 p.
  • 言語 ENG
  • 商品コード 9789819724734
  • DDC分類 370.727

Full Description

The book delves into the fundamental concepts of sentiment analysis, its techniques, and its practical applications in the context of educational data. The book begins by introducing the concept of sentiment analysis and its relevance in educational settings. It provides a thorough overview of the various techniques used for sentiment analysis, including natural language processing, machine learning, and deep learning algorithms. The subsequent chapters explore applications of sentiment analysis in educational data mining across multiple domains. The book illustrates how sentiment analysis can be employed to analyze student feedback and sentiment patterns, enabling educators to gain valuable insights into student engagement, motivation, and satisfaction. It also examines how sentiment analysis can be used to identify and address students' emotional states, such as stress, boredom, or confusion, leading to more personalized and effective interventions. Furthermore, the book explores the integration of sentiment analysis with other educational data mining techniques, such as clustering, classification, and predictive modeling. It showcases real-world case studies and examples that demonstrate how sentiment analysis can be combined with these approaches to improve educational decision-making, curriculum design, and adaptive learning systems.

Contents

Chapter 1: Sentiment Analysis in Natural Language Processing.- Chapter 2: An Overview of Educational Data Mining.- Chapter 3: Impact of Sentiment Analysis in Education Sector.- Chapter 4: Techniques and Approaches in Sentiment Analysis.- Chapter 5: Machine Learning with Sentiment Analysis.- Chapter 6: Incorporation of Sentiment Analysis with Educational Data Mining.- Chapter 7: Preformation Evaluation using Sentiment Analysis.

最近チェックした商品