Data Science: Foundations and Applications : 29th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2025, Sydney, Australia, June 10-13, 2025, Proceedings, Part VII (Lecture Notes in Computer Science)

個数:
  • 予約

Data Science: Foundations and Applications : 29th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2025, Sydney, Australia, June 10-13, 2025, Proceedings, Part VII (Lecture Notes in Computer Science)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 417 p.
  • 言語 ENG
  • 商品コード 9789819682973

Full Description

The two-volume set LNAI 15875 + 15876 constitutes the proceedings of the 29th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2025 Special Session, held in Sydney, NSW, Australia, during June 10-13, 2025.

The 68 full papers included in this set were carefully reviewed and selected from 696 submissions. They were organized in topical sections as follows: survey track; machine learning; trustworthiness; learning on complex data; graph mining; machine learning applications; representation learning; scientific/business data analysis; and special track on large language models.

Contents

.- Graph Mining.
.- MuCo-KGC: Multi-Context-Aware Knowledge Graph Completion.
.- Tensor-Fused Multi-View Graph Contrastive Learning.
.- FOG: Interpretable Feature-Oriented Graph Neural Networks for Tabular Data  Prediction.
.- High Resolution Image Classification with Rich Text Information Based on Graph Convolution Neural Network.
.- Time Interval Aware Graph Neural Networks for Session-Based Recommendation.
.- SSGNN: Structure-aware Scoring Graph Neural Network for Molecular Representation.
.- Mint: An Efficient and Robust In-Place Update Approach for Graph-based Vector Index.
.- Machine Learning Applications.
.- Advancing Comprehensive Aspect-Based Sentiment Analysis with Generative Models.
.- A Systematic Evaluation of Generative Models on Tabular Transportation Data.
.- SDF-Guided Multi-modal Big Data Road Extraction.
.- Player Movement Predictions Using Team and Opponent Dynamics for Doubles Badminton.
.- Representation Learning.
.- Late Fusion Ensembles for Speech Recognition on Diverse Input Audio Representations.
.- Text Enhancement-based Multimodal Fusion for Video Sentiment Analysis.
.- Advancing Rubric-based Automated Essay Scoring with Multi-View BERT: A Case Study in New Zealand.
.- A Script Event Prediction Method Based on Multi-Level Joint Pretraining and Prompt Fine-Tuning.
.- Scientific/Business Data Analysis.
.- A Multimodal Fusion Model Leveraging MLP Mixer and Handcrafted Features-based Deep Learning Networks for Facial Palsy Detection.
.- Using Pseudo-Synonyms to Generate Embeddings for Clinical Terms.
.- Corporate Carbon Emission Prediction: Combining Structured and Unstructured Data.
.- GDCK: Efficient Large-Scale Graph Distillation utilizing a Model-free Kernelized Approach.
.- Efficient DNA fragment assembly based on Discrete Slime Mould Algorithm.
.- Multi-Scale Control Model for Network Group Behavior.
.- Can Self Supervision Rejuvenate Similarity-Based Link Prediction?.
.- Managing Data Uncertainty in Automatic Mapping of Clinical Classification Systems.
.- Insomnia Detection Based on Brain State Sleep Trajectories.
.- MCA: Multimodal Contrastive Augmentation for Medical Report Generation.
.- Special Track on Large Language Models.
.-Adapting Large Language Models for Parameter-Efficient Log Anomaly Detection.
.- Bot Wars Evolved: Orchestrating Competing LLMs in a Counterstrike Against Phone Scams.
.- Large Language Models with Multi-Faceted Relation Alignment for User Novel Interest Discovery.
.- Estimating Impact of Behavior Change Messages Using Large Language Models.
.- A Meta-Thinking Approach to Mitigating Linguistic Sycophancy in Vision-Language Models.
.- VisCon-100K: Leveraging Contextual Web Data for Fine-tuning Vision Language Models.
.- TRAWL: Tensor Reduced and Approximated Weights for Large Language Models.
.- DAG-Think-Twice: Causal Structure Guided Elicitation of Causal Reasoning in Large Language Model.
.- GRL-Prompt: Towards Prompts Optimization via Graph-empowered Reinforcement Learning using LLMs' Feedback.

最近チェックした商品