Brain Fingerprint Identification (Brain Informatics and Health)

個数:

Brain Fingerprint Identification (Brain Informatics and Health)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 200 p.
  • 言語 ENG
  • 商品コード 9789819645114

Full Description

This open access book delves into the emerging field of biometric identification using brainwave patterns. Specifically, this book presents recent advances in electroencephalography (EEG)-based biometric recognition to identify unique neural signatures that can be used for secure authentication and identification.

Traditional biometric systems such as fingerprints, iris scans, and face recognition have become integral to security and identification. However, these methods are increasingly vulnerable to spoofing and other forms of attack. Unlike other traditional biometrics, EEG signals are non-invasive, continuous authentication, liveness detection, and resistance to coercion due to the complexity and uniqueness of brain patterns. Therefore, it is particularly suitable for high-security fields such as military and finance, providing a promising alternative for future high-security identification and authentication.

However, most of the existing brain fingerprint identification studies require subjects to perform specific cognitive tasks, which limits the popularization and application of brain fingerprint identification in practical scenarios. Additionally, due to the low signal-to-noise ratio (SNR) and time-varying characteristics of EEG signals, there are distribution differences in EEG data across sessions from several days, leading to stability issues in brain fingerprint features extracted at different sessions. Finally, because the EEG signal is affected by the coupling of multiple factors and the nervous system has continuous spontaneous variability, which makes it difficult for the brain fingerprint identification model to be suitable for the scenarios of unseen sessions and cognitive tasks, and there is the problem of insufficient model generalization. In this book, based on traditional machine learning methods and deep learning methods, the authors will carry out multi-task single-session, single-task multi-session, and multi-task multi-session brain fingerprint identification research respectively for the above problems, to provide an effective solution for the application of brain fingerprint identification in practical scenarios.

Contents

Chapter 1 Overall of Brain Fingerprint Identification.- Chapter 2 Basics of EEG Signals.- Chapter 3 Multi-Task Brain Fingerprint Identification Based on Brain Networks.- Chapter 4 Multi-Task Brain Fingerprint Identification Based on Low-Rank and Sparse Decomposition Model.- Chapter 5 Multi-Task Brain Fingerprint Identification Based on Residual and Multi-scale Spatio-temporal Convolution Neural Network (RAMST-CNN).- Chapter 6 Multi-Task Brain Fingerprint Identification Based on Convolutional Tensor-Train Neural Network (CTNN).- Chapter 7 Specific-Task and Multi-Session Brain Fingerprint Identification Based on Multi-scale Convolution and Graph Pooling Network (MCGP).- Chapter 8 Multi-Task and Multi-Session Brain Fingerprint Identification Based on Tensorized Spatial-Frequency Attention Network with Domain Adaptation (TSFAN).- Chapter 9 Task-independent Cross-Session Brain Fingerprint Identification Based on Disentangled Adversarial Generalization Network (DAGN).- Chapter 10 Summary.

最近チェックした商品