Evolutionary Multi-Criterion Optimization : 13th International Conference, EMO 2025, Canberra, ACT, Australia, March 4-7, 2025, Proceedings, Part II (Lecture Notes in Computer Science)

個数:

Evolutionary Multi-Criterion Optimization : 13th International Conference, EMO 2025, Canberra, ACT, Australia, March 4-7, 2025, Proceedings, Part II (Lecture Notes in Computer Science)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 255 p.
  • 言語 ENG
  • 商品コード 9789819635375

Full Description

This two-volume set LNCS 15512-15513 constitutes the proceedings of the 13th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2025, held in Canberra, ACT, Australia, in March 2025.

The 38 full papers and 2 extended abstracts presented in this book were carefully reviewed and selected from 63 submissions. The papers are divided into the following topical sections: 

Part I : Algorithm design; Benchmarking; Applications.

Part II : Algorithm analysis; Surrogates and machine learning; Multi-criteria decision support.

Contents

.- Algorithm analysis.

.- Visual Explanations of Some Problematic Search Behaviors of Frequently Used EMO Algorithms.

.- Numerical Analysis of Pareto Set Modeling.

.- When Is Non-deteriorating Population Update in MOEAs Beneficial?.

.- Analysis of Merge Non-dominated Sorting Algorithm.

.- Comparative Analysis of Indicators for Multi-objective Diversity Optimization.

.- Performance Analysis of Constrained Evolutionary Multi-Objective Optimization Algorithms on Artificial and Real-World Problems.

.- On the Approximation of the Entire Pareto Front of a Constrained Multi objective Optimization Problem.

.- Small Population Size is Enough in Many Cases with External Archives.

.- Surrogates and machine learning.

.- Knowledge Gradient for Multi-Objective Bayesian Optimization with Decoupled Evaluations.

.- Surrogate Strategies for Scalarisation-based Multi-objective Bayesian Optimizers.

.- A Mixed-Fidelity Evaluation Algorithm for Efficient Constrained Multi- and Many-Objective Optimization: First Results.

.- Efficient and Accurate Surrogate-Assisted Approach to Multi-Objective Optimization Using Deep Neural Networks.

.- Large Language Model for Multiobjective Evolutionary Optimization.

.- Multi-Objective Multi-Agent Reinforcement Learning for Autonomous Driving in Mixed-Traffic Environments.

.- Parallel TD3 for Policy Gradient-based Multi-Condition Multi-Objective Optimisation.

.- Multi-criteria decision support.

.- Reliability-based MCDM Using Objective Preferences Under Variable Uncertainty.

.- An Efficient Iterative Approach for Uniformly Representing Pareto Fronts.

.- Preference Learning for Multi-objective Reinforcement Learning by Means of Supervised Learning.

.- Bayesian preference elicitation for decision support in multi-objective optimization.

最近チェックした商品