Artificial Intelligence in Microbial Research : Bridging the Gap

個数:

Artificial Intelligence in Microbial Research : Bridging the Gap

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 543 p.
  • 言語 ENG
  • 商品コード 9789819634477

Full Description

This book explores the convergence of microbiology and artificial intelligence (AI) and delves into the intricate world of microbial systems enhanced by cutting-edge AI technologies. The book begins by establishing a foundation in the fundamentals of microbial ecosystems and AI principles. It elucidates the integration of AI in microbial genomics, demonstrating how advanced algorithms analyze genomic data and contribute to genetic engineering. Bioinformatics and computational microbiology are explored, showcasing AI's role in predictive modeling and computational tools. The intersection of AI and microbial applications extends to drug discovery, precision agriculture, and pathogen detection. Readers gain insights into AI-driven drug development, the optimization of agricultural practices using microbial biostimulants, and early warning systems for crop diseases. The book highlights AI's role in microbial biotechnology, elucidating its impact on bioprocessing, fermentation, and other biotechnological applications. Climate-smart agriculture and microbial adaptations to environmental challenges are discussed, emphasizing sustainable practices.

This book caters to a diverse audience including teachers, researchers, microbiologist, computer bioinformaticians, plant and environmental scientists. The book serves as additional reading material for undergraduate and graduate students of computer science, biomedical, agriculture, human science, forestry, ecology, soil science, and environmental sciences and policy makers to be a useful to read.

Contents

Chapter 1. Thematic Analysis of Media Influence on the Adoption of AI Climate Prediction Models in Microbial Agriculture Practices: A Case Study of Uttar Pradesh Using Diffusion of Innovations Theory.- Chapter 2. Understanding Media Influence on the Adoption of AI Climate Prediction Models in Microbiological Agricultural Practices: A Study of Uttarakhand.- Chapter 3. Advancements in Precision Agriculture: Integrating Machine Learning Techniques for Crop Monitoring and Management.- Chapter 4. Advances in Agricultural Analytics Machine Learning Applications for Crop Monitoring and Management.- Chapter 5. AI Driven Strategies for Microbial Infection from Discovery to Therapeutic Design.- Chapter 6. Use of Artificial Intelligence for Monitoring Algal Blooms in Aquatic Ecosystem.- Chapter 7. Ai-Yolact Model for Automatic Severity Grading Of Microbial Based Anthracnose Infection in Camellia Leaves.- Chapter 8. An Explainable AI Based CNN model for Plant Disease Diagnosis.- Chapter 9. Artificial Intelligent Enable Intelligent Bio-Sensor for Microbial Analysisfor Lung Health.- Chapter 10. Biosensors Guided Ai Interventions in Personalized Medicines.- Chapter 11. Education and Training for Developing Responsible AI Solutions in Healthcare.- Chapter 12. Automation of Drug Discovery & Development.- Chapter 13. Genome Studies and Disease Diagnosis.- Chapter 14. Exploring Explainable Artificial Intelligence in Healthcare: Issues, Challenges and Opportunities.- Chapter 15. Investigating Integron as the Principal Factor of Antibiotic Resistance in the Human Gut: A Holistic Perspective.- Chapter 16. Hybrid Deep Learning for Predictive Modelling of Microbial Biostimulants in Precision Agriculture.- Chapter 17. Challenges and Opportunities In Integrating Generative Al With Wearable Devices.- Chapter 18. Medical Image Analysis and Morphology Using Artificial Intelligence.- Chapter 19. Simulation of Biological Structures Using Generative Artificial Intelligence.- Chapter 20. Neuromuscular Disease Classification: Leveraging Deep Learning Feature Extractors and Applications.

最近チェックした商品