Knowledge Graphs and Semantic Computing : 10th China Conference, CCKS 2025, Fuzhou, China, September 19-21, 2025, Proceedings (Communications in Computer and Information Science)

個数:
  • 予約
  • ポイントキャンペーン

Knowledge Graphs and Semantic Computing : 10th China Conference, CCKS 2025, Fuzhou, China, September 19-21, 2025, Proceedings (Communications in Computer and Information Science)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 言語 ENG
  • 商品コード 9789819585243

Full Description

This book constitutes the proceedings of the 10th China Conference on Knowledge Graph and Semantic Computing, CCKS 2025, held in Fuzhou, China, during September 19-21, 2025.

 

The 22 full papers presented in this book were carefully reviewed and selected from 112 submissions. They were organized into the following topical sections: Knowledge Graph Construction and Integration; Large Models Enhanced by Knowledge Graphs; Applications of Knowledge Graphs and Large Models/Agents; Open Resources for Knowledge Graphs and Large Models; Evaluations.

Contents

.- Knowledge Graph Construction and Integration.

.- A Cross-Subgraph Attention Fusion and Comparison Method for Contrastive Learning Based Knowledge Graph Completion.

.- A Preliminary Attempt to Generate a Sichuan Dialect Handbook by LLMs.

.- EDREL: Document-level Relation Extraction with Evidence and Logical Rules.

.- Knowledge Retrieval-Augmented Interest learning for Recommendation.

.- Large Models Enhanced by Knowledge Graphs.

.- Multi-granularity Hierarchical RAG for Welding Parameter Recommendation.

.- Lag-Relative Sparse Attention In Long Context Training.

.- VIKA: Vectorized Indispensable Knowledge-subgraph Augmentation for Large Language Models.

.- Traff-LLM: A Spatio-Temporal Knowledge-Guided Large Language Model for Traffic Flow Prediction.

.- Applications of Knowledge Graphs and Large Models/Agents.

.- MAEPS: Multi-Agent Event Prediction System Based on Human Expert Team Collaboration Simulation.

.- Zero-shot Instruction Generation via Dual-Alignment Instruction Wrappers with Summary-Text fused instruction wrappers.

.- FEFT: A Feedback-enhanced Evaluation Fine-tuning Framework for Financial Report Summarization.

.- Iterative Generation Method for Factual QA in Large Language Models Based on Semantic Entropy Verification.

.- Open Resources for Knowledge Graphs and Large Models.

.- Autism Children Education Knowledge Graph: Construction and Validation.

.- C-Voice: Culturally-grounded Multi-dimensional Alignment of LLMs with Chinese Social Values.

.- Evaluations.

.- HiParse-RAG: A High-Fidelity Document Parsing and Hybrid Retrieval Multi-Model Fusion Framework for Complex Academic Question Answering.

.- HybriDoc: An Adaptive Multi-Path Framework for End-to-End Document Structure Extraction.

.- Pre-training for Document Structure Extraction with Lightweight Model Architecture.

.- Robust Detection of AI-Generated Text: Insights on Evolving LLMs and Adversarial Data.

.- A Fact-Aware Cascaded Framework for Dynamic-granularity Timeline Summarization.

.- Multi-Agent for Dynamic-Granularity Timeline Summarization.

.- Advancing Grounded Multimodal NER via Self-Reflective Prompt Refinement and Visual Noise Mitigation.

.- ReFineG: Synergizing Small Supervised Models and LLMs for Low-Resource Grounded Multimodal NER.

最近チェックした商品