Scaling Laws of Network Value : From Communication to Learning

個数:
  • 予約
  • ポイントキャンペーン

Scaling Laws of Network Value : From Communication to Learning

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 言語 ENG
  • 商品コード 9789819581092

Full Description

This book bridges two seemingly distinct worlds—network theory and machine learning—to reveal the universal laws of scalability that underlie both. It examines how value, capacity, and performance evolve as systems expand, offering a unified framework that connects Metcalfe's Law with neural scaling laws.

By comparing network growth and model scaling, the book uncovers striking parallels: the diminishing throughput of densely connected networks mirrors the saturation of model generalization in large AI systems. Through rigorous analytical models, it explains when performance scales sublinearly, linearly, or even superlinearly—and why these transitions matter for the future of communication infrastructure and intelligent computation.

Designed for researchers and advanced practitioners in computer networks, information theory, and artificial intelligence, this work delivers both conceptual insight and practical guidance. It helps readers recognize the structural forces that shape scalability, the mathematical trade-offs between capacity and efficiency, and the design principles that can transfer between large-scale networks and learning systems.

Readers with backgrounds in probability, linear algebra, and algorithmic modeling will find this book a compelling synthesis of theory and application—a guide to understanding how scaling behavior defines the limits and possibilities of modern computational systems.

Contents

Chapter 1: Introduction and Overview.- Chapter 2: Scaling Laws of Self-Organized Communication Networks: Throughput Capacity.- Chapter 3: Scaling Laws of Self-Organized Communication Networks: Transport Complexity.- Chapter 4: Scaling Laws of Deep-Learning Neural Networks: Taxonomy and Survey.- Chapter 5: Scaling Laws of Deep-Learning Neural Networks: Expressive Power.- Chapter 6: Scaling Laws of Deep-Learning Neural Networks: Information Loss.

最近チェックした商品