A Billiard Problem in Nonlinear Dissipative Systems (Surveys and Tutorials in the Applied Mathematical Sciences)

個数:
  • 予約
  • ポイントキャンペーン

A Billiard Problem in Nonlinear Dissipative Systems (Surveys and Tutorials in the Applied Mathematical Sciences)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 130 p.
  • 言語 ENG
  • 商品コード 9789819575602

Full Description

This book addresses a new class of billiard problems, focusing on the motion of a self-propelling disk in a nonlinear dissipative system on a rectangular domain. Unlike classical billiards, which have been extensively studied in mathematics, this setting introduces unique dynamics inspired by experiments with camphor disks floating on water—a well-known phenomenon in nonlinear science. Laboratory observations reveal two striking properties: (i) the disk reflects without physical collision at the boundary, and (ii) the reflection angle exceeds the incidence angle, differing from the perfect elastic reflection of classical billiards. These features suggest that the behavior of a self-propelling disk is fundamentally distinct from classical billiard motion.

The purpose of this book is to provide a mathematical understanding of such dynamics. We propose three levels of modeling: a moving-boundary (MB) model, a particle model, and a discrete-time model. To demonstrate that the MB model satisfies properties (i) and (ii), we derive the particle model for slow disk motion, describing its position and velocity. Numerical simulations indicate that although classical billiards in a rectangle are simple, the particle model exhibits complex behavior depending on the domain's shape. To analyze this complexity, we construct discrete-time models that capture the evolution of reflection angles and positions. Using dynamical systems theory, bifurcation analysis, and complementary numerical methods, we show that a self-propelling disk can display intricate and varied billiard motions—even in a rectangular domain—due to angle interactions.

This book emphasizes that the trajectory of a billiard disk in a nonlinear dissipative system is determined by inherent dynamics, unlike classical billiards, where outcomes depend heavily on player skill.

Contents

Introduction.- Preliminaries.- Mathematical modeling, simulation, and analysis.- Particle models.- Discrete-time models.- Conclusion.

最近チェックした商品