Variable-Fidelity Surrogate : Experiment Design, Modeling, and Applications on Design Optimization (Engineering Applications of Computational Methods)

個数:
  • 予約

Variable-Fidelity Surrogate : Experiment Design, Modeling, and Applications on Design Optimization (Engineering Applications of Computational Methods)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 190 p.
  • 言語 ENG
  • 商品コード 9789819555260

Full Description

This book delves deeply into the field of variable-fidelity surrogate modeling, examining its application in the optimization of complex multidisciplinary design optimization problems. The text presents a detailed exploration of surrogate modeling techniques, with a focus on variable-fidelity approaches that integrate models of varying accuracy to enhance the efficiency of optimization processes. Covering foundational concepts, the book progresses through diverse modeling strategies, including scaling function-based approaches, sequential techniques, physics-informed neural networks-based and deep transfer learning-based methods. It also addresses critical aspects such as the development of surrogate-assisted optimization algorithms.

By adopting a holistic perspective, this book emphasizes the importance of integrating surrogate models with optimization algorithms to tackle real-world multidisciplinary design challenges. The book is  designed for graduate students, researchers, and engineers working in areas such as engineering design, optimization, and computational modeling. It is an essential resource for those interested in advancing the field of surrogate modeling and its applications to complex design optimization tasks, providing both theoretical insights and practical guidance.

Contents

Preface.- Chapter 1 Introduction.- Chapter 2 Key Technologies for Surrogate Modeling.- Chapter 3 Fast Nested Latin Hypercube Design via Translation Propagation.- Chapter 4 Nested Maximin Designs Based on Successive Local Enumeration and Discrete Optimization.- Chapter 5 Variable-Fidelity Surrogate Modeling via Scale Functions.- Chapter 6 Variable-Fidelity Physics-Informed Neural Networks.- Chapter 7 Multi-Fidelity Transfer Learning Model Based on Dynamic Task-Weighted Loss.- Chapter 8 Online Variable-Fidelity Surrogate-Assisted Harmony Search Algorithm with Multi-Level Screening Strategy.- Chapter 9 Expensive Design Optimization With Transfer-Learning Based Sequential Variable-Fidelity Surrogate.- Chapter 10 Conclusion Remarks.

最近チェックした商品