Machine Learning Integration in Power Electronics : Essential Principles, Implementation Practices, and Industry Applications

個数:
  • 予約

Machine Learning Integration in Power Electronics : Essential Principles, Implementation Practices, and Industry Applications

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 280 p.
  • 言語 ENG
  • 商品コード 9789819538447

Full Description

This book provides a comprehensive guide for integrating machine learning techniques to enhance power electronic systems, with a focus on real-time applications, fault detection, and advanced control systems. Machine learning applications in power electronics delve into the transformative potential of machine learning in the field of power electronics. It is designed for professionals, researchers, and students who seek to leverage machine learning to address complex challenges and optimize performance in power electronics. The book explores the synergies between machine learning and power electronics, highlighting the importance of these technologies in industries such as renewable energy, electric vehicles, and industrial automation. It provides practical insights into implementing machine learning solutions, covering essential concepts, algorithms, workflows, and real-time deployment. Readers can gain valuable knowledge on integration strategies and advanced applications, including control of permanent magnet synchronous motor (PMSM) drives and fault detection in neutral point clamped (NPC) inverters. Additionally, the book offers best practices for selecting appropriate machine learning methods, such as integrating physics-informed models, utilizing lightweight neural networks, ensuring transparency with explainable methods, and employing conformal prediction for reliable outcomes. Beyond practical guidance, this book presents innovative ideas from recent literature, showcasing cutting-edge applications and future research directions. With its practical focus, detailed methodologies, and forward-looking insights, this book is an essential resource for anyone looking to harness the power of machine learning to drive innovation and improve system performance in power electronics.

Contents

Introduction to Machine Learning in Power Electronics.- Fundamentals of Machine Learning.- Integrating Machine Learning with Power Electronics.- Machine Learning Methods for Control of PMSM Drives.- Machine Learning for Fault Detection.- Recommendations and Best Practices.

最近チェックした商品